Search the Database
SELECT CATEGORIES
Search for:
Cardiovascular Disease
- Association Between Exposure to Pyrethroid Insecticides and Risk of All-Cause and Cause-Specific Mortality in the General US Adult Population
Widespread exposure to pyrethroid insecticides has been reported among the general population in the United States and worldwide. However, little is known about the association of pyrethroid. To examine the association of pyrethroid exposure with all-cause and cause-specific mortality among adults in the United States. The national representative cohort included 2116 adults aged 20 years and older who participated in the US National Health and Nutrition Examination Survey conducted from 1999 to 2002 and provided urine samples for pyrethroid metabolite measurements. Participants were linked to mortality data from the survey date through December 31, 2015. Data were analyzed from May to August 2019. Urinary levels of 3-phenoxybenzoic acid, a general pyrethroid metabolite and commonly used biomarker for pyrethroid exposure, were determined by using high-performance liquid chromatography coupled with electrospray chemical ionization and tandem mass spectrometry. Mortality from all causes, cardiovascular disease, and cancer. This cohort study of 2116 adults comprised 1145 women (weighted proportion, 51.6%) and 971 men (weighted, 48.4%), with a weighted mean (SE) age of 42.6 (0.5) years; 958 participants (weighted, 68.4%) were of non-Hispanic white ancestry, 646 (weighted, 14.7%) of Hispanic ancestry, 419 (weighted, 11.3%) of non-Hispanic black ancestry, and 93 (weighted, 5.6%) of other ancestry. During a median of 14.4 years (range, 0.1-16.8 years) of observation, 246 deaths occurred, including 41 associated with cardiovascular disease and 52 associated with cancer. Participants with higher urinary 3-phenoxybenzoic acid levels were at a higher risk of death during the follow-up period, with death occurring in 8.5% (unweighted, 75 of 709), 10.2% (unweighted, 81 of 701), and 11.9% (unweighted, 90 of 706) of participants across increasing tertiles of urinary 3-phenoxybenzoic acid levels. After adjustment for age, sex, race/ethnicity, socioeconomic status, dietary and lifestyle factors, body mass index, and urinary creatinine levels, the hazard ratios for all-cause mortality, cardiovascular disease mortality, and cancer mortality among participants with the highest tertile compared with those with the lowest tertile of urinary 3-phenoxybenzoic acid levels were 1.56 (95% CI, 1.08-2.26), 3.00 (95% CI, 1.02-8.80), and 0.91 (95% CI, 0.31-2.72), respectively. In this nationally representative sample of US adults, environmental exposure to pyrethroid insecticides was associated with an increased risk of all-cause and cardiovascular disease mortality. Further studies are needed to replicate the findings and determine the underlying mechanisms.
[Bao, W., Liu, B., Simonsen, D.W. and Lehmler, H.J., 2019. JAMA Internal Medicine. 180(3):367-374.] - Inflammatory and cardiometabolic risk on obesity: role of environmental xenoestrogens.
The objective of the study was to investigate the levels of xenoestrogens (XEs) in plasma and adipose tissue (AT) depots in a sample of pre- and postmenopausal obese women undergoing bariatric surgery and their cardiometabolic impact in an obese state. Authors evaluated XE levels in plasma and visceral and subcutaneous AT samples of Portuguese obese (body mass index ≥ 35 kg/m(2)) women undergoing bariatric surgery. Association with metabolic parameters and 10-year cardiovascular disease risk was assessed. Data show that XEs are pervasive in this obese population. Distribution of individual and concentration of total XEs differed between plasma, visceral AT, and subcutaneous AT, and the pattern of accumulation was different between pre- and postmenopausal women. Significant associations between XE levels and metabolic and inflammatory parameters were found. In premenopausal women, XEs in plasma seem to be a predictor of 10-year cardiovascular disease risk.
[Teixeira D, Pestana D, Santos C, Correia-Sá L, et al. 2015. J Clin Endocrinol Metab. 100(5):1792-801]