Search the Database




Amphibians / Reptiles

Beneficial Insects

Biodiversity (General)



Fish and Other Aquatic Organisms




Organic / Sustainability








Birth Defects

Body Burdens

Body Burdens (General)

Breast Milk

Farmworkers and Farmworker Children




Oxidative Stress

Skin Reactions

Urine and Other Compartments

Brain and Nervous System Disorders

Alzheimer’s Disease

Amyotrophic Lateral Sclerosis (ALS)

Central Nervous System (CNS) Tumors




Huntington’s Disease

Mood Disorders/Mental Health

Multiple Sclerosis (MS)

Neurological Disorders


Parkinson’s Disease



Bladder Cancer

Bone Cancer

Brain Cancer

Adult Brain Cancer

Childhood Brain Cancer

Breast Cancer

Cancer (General)

Cervical Cancer

Colorectal Cancer

Eye Cancer

Gallbladder Cancer

Kidney/Renal Cancer

Laryngeal Cancer


Adult Leukemia

Child Leukemia

Lip Cancer

Liver/Hepatic Cancer

Lung Cancer


Hodgkin’s Lymphoma

Non-Hodgkin’s Lymphoma


Mouth Cancer

Multiple Myeloma


Oesophageal Cancer

Ovarian Cancer

Pancreatic Cancer

Prostate Cancer

Sinonasal Cancer

Soft Tissue Sarcoma

Stomach Cancer

Testicular Cancer

Thyroid Cancer

Uterine Cancer

Cardiovascular Disease


Endocrine Disruption

Endocrine Disruption (General)

Epigenetic Mechanisms


Kidney Function/Disease

Liver Damage

Metabolic Disorder

Thyroid Function/Disease

Immune System Disorders

Arthritis/Joint Inflammation

Celiac Disease

Gastrointestinal Disorders




Kidney Function/Disease

Liver Damage

Multiple Sclerosis (MS)


Systemic Lupus Erythematosus (Lupus)

Thyroid Function/Disease

Learning/Developmental Disorders

Attention Deficit Hyperactivity Disorder (ADHD)


Developmental Delays

Respiratory Disease

Disproportionate Risk

Sexual and Reproductive Dysfunction

Birth Defects AND Sexual and Reproductive Dysfunction

  • Prenatal exposure to pesticides and risk for holoprosencephaly: a case-control study
    Pesticide exposure during susceptible windows and at certain doses are linked to numerous birth defects. Early experimental evidence suggests an association between active ingredients in pesticides and holoprosencephaly (HPE), the most common malformation of the forebrain in humans (1 in 250 embryos). No human studies to date have examined the association. This study investigated pesticides during multiple windows of exposure and fetal risk for HPE. It is hypothesized that pre-conception and early pregnancy, the time of brain development in utero, are the most critical windows of exposure. A questionnaire was developed for this retrospective case-control study to estimate household, occupational, and environmental pesticide exposures. Four windows of exposure were considered: preconception, early, mid and late pregnancy. Cases were identified through the National Human Genome Research Institute’s ongoing clinical studies of HPE. Similarly, controls were identified as children with Williams-Beuren syndrome, a genetic syndrome also characterized by congenital malformations, but etiologically unrelated to HPE. We assessed for differences in odds of exposures to pesticides between cases and controls. Findings from 91 cases and 56 controls showed an increased risk for HPE with reports of maternal exposure during pregnancy to select pesticides including personal insect repellants (adjusted odds ratio (aOR) 2.89, confidence interval (CI): 0.96–9.50) and insecticides and acaricides for pets (aOR 3.84, CI:1.04–16.32). Exposure to household pest control products during the preconception period or during pregnancy was associated with increased risk for HPE (aOR 2.60, OR: 0.84–8.68). No associations were found for occupational exposures to pesticides during pregnancy (aOR: 1.15, CI: 0.11–11.42), although exposure rates were low. Higher likelihood for HPE was also observed with residency next to an agricultural field (aOR 3.24, CI: 0.94–12.31). Observational findings are consistent with experimental evidence and suggest that exposure to personal, household, and agricultural pesticides during pregnancy may increase risk for HPE. Further investigations of gene by environment interactions are warranted.
    [Addissie, Y.A., Kruszka, P., Troia, A., Wong, Z.C., Everson, J.L., Kozel, B.A., Lipinski, R.J., Malecki, K.M. and Muenke, M., 2020. Environmental Health, 19(1), pp.1-13.]
  • Assessment of Glyphosate Induced Epigenetic Transgenerational Inheritance of Pathologies and Sperm Epimutations: Generational Toxicology
    Ancestral environmental exposures to a variety of factors and toxicants have been shown to promote the epigenetic transgenerational inheritance of adult onset disease. One of the most widely used agricultural pesticides worldwide is the herbicide glyphosate (N-(phosphonomethyl)glycine), commonly known as Roundup. There are an increasing number of conflicting reports regarding the direct exposure toxicity (risk) of glyphosate, but no rigorous investigations on the generational actions. The current study using a transient exposure of gestating F0 generation female rats found negligible impacts of glyphosate on the directly exposed F0 generation, or F1 generation offspring pathology. In contrast, dramatic increases in pathologies in the F2 generation grand-offspring, and F3 transgenerational great-grand-offspring were observed. The transgenerational pathologies observed include prostate disease, obesity, kidney disease, ovarian disease, and parturition (birth) abnormalities. Epigenetic analysis of the F1, F2 and F3 generation sperm identified differential DNA methylation regions (DMRs). A number of DMR associated genes were identified and previously shown to be involved in pathologies. Therefore, we propose glyphosate can induce the transgenerational inheritance of disease and germline (e.g. sperm) epimutations. Observations suggest the generational toxicology of glyphosate needs to be considered in the disease etiology of future generations.
    [Kubsad, D., Nilsson, E.E., King, S.E., Sadler-Riggleman, I., Beck, D. and Skinner, M.K., 2019. Scientific reports, 9(1), pp.1-17.]
  • Association of Maternal Insecticide Levels With Autism in Offspring From a National Birth Cohort
    Autism is a complex neurodevelopmental disorder with a largely unknown etiology. To date, few studies have investigated prenatal exposure to toxins and risk of autism by using maternal biomarkers of exposure. Persistent organic pollutants are lipophilic halogenated organic compounds and include the insecticide dichlorodiphenyltrichloroethane (DDT), as well as its metabolite p,p′-dichlorodiphenyl dichloroethylene (p,p′-DDE), and polychlorinated biphenyls (PCBs). The objective of this study was to test whether elevated maternal levels of persistent organic pollutants are associated with autism among offspring. The investigation was derived from the Finnish Prenatal Study of Autism, a national birth cohort study based on a nested case-control design. Cases of autism among children born between 1987 and 2005 were ascertained by national registry linkages. In cases of childhood autism and matched control subjects (778 matched case-control pairs), maternal serum specimens from early pregnancy were assayed for levels of p,p′-DDE and total levels of PCBs. The odds of autism among offspring were significantly increased with maternal p,p′-DDE levels that were in the highest 75th percentile, with adjustment for maternal age, parity, and history of psychiatric disorders (odds ratio=1.32, 95% CI=1.02, 1.71). The odds of autism with intellectual disability were increased by greater than twofold with maternal p,p′-DDE levels above this threshold (odds ratio=2.21, 95% CI=1.32, 3.69). There was no association between total levels of maternal PCBs and autism. These findings provide the first biomarker-based evidence that maternal exposure to insecticides is associated with autism among offspring. Although further research is necessary to replicate this finding, this study has implications for the prevention of autism and may provide a better understanding of its pathogenesis.
    [Brown, A.S., Cheslack-Postava, K., Rantakokko, P., Kiviranta, H., Hinkka-Yli-Salomäki, S., McKeague, I.W., Surcel, H.M. and Sourander, A., 2018. American Journal of Psychiatry, 175(11), pp.1094-1101.]
  • Mixed "Antiandrogenic" Chemicals at Low Individual Doses Produce Reproductive Tract Malformations in the Male Rat.
    Biomonitoring efforts have clearly shown that all humans are exposed to chemical mixtures. Of concern is whether or not exposure to mixtures during pregnancy contributes to congenital abnormalities in children even when each chemical is at an individual dose that does not affect the fetus. Here, we hypothesized that in utero exposure to a mixture of chemicals covering multiple "antiandrogenic" mechanisms of action at doses that individually have no adverse effect would result in permanent reproductive tract alterations in the male rat after birth. Pregnant dams were exposed to a range of dilutions (100%, 50%, 25%, 12.5%, 6.25%, or vehicle control) of a mixture containing pesticides, phthalates, and drugs (p, p'-DDE, linuron, prochloraz, procymidone, pyrifluquinazon, vinclozolin, finasteride, flutamide, simvastatin, and 9 phthalates [dipentyl, dicyclohexyl, di-2-ethylhexyl, dibutyl, benzyl butyl, diisobutyl, diisoheptyl, dihexyl, and diheptyl]). The top dose contained each chemical at 20% of its lowest observed adverse effect level (LOAEL) for the most sensitive male reproductive alteration following in utero exposure. We found that male rat offspring displayed a variety of neonatal, pubertal, and permanent adult effects across all dose levels. Even at the lowest dose (each chemical approximately 80-fold below lowest observed adverse effect level) there were permanent reductions in several reproductive tract tissue weights. In the top dose group, 100% of male offspring displayed permanent severe birth defects including genital malformations. Despite acting via 5 different molecular initiating events, a mixture of 18 chemicals can combine to produce additive effects even when each compound is at a relatively low dose.
    [Conley JM, Lambright CS, Evans N, Cardon M, et al. Toxicol Sci. 164(1):166-178]
  • Prenatal Exposure to Ambient Pesticides and Preterm Birth and Term Low Birthweight in Agricultural Regions of California.
    Findings from studies of prenatal exposure to pesticides and adverse birth outcomes have been equivocal so far. We examined prenatal exposure to agricultural pesticides in relation to preterm birth and term low birthweight, respectively, in children born between 1998 and 2010, randomly selected from California birth records. We estimated residential exposure to agriculturally applied pesticides within 2 km of residential addresses at birth by pregnancy trimester for 17 individual pesticides and three chemical classes (organophosphates, pyrethroids, and carbamates). Among maternal addresses located within 2 km of any agricultural pesticide application, we identified 24,693 preterm and 220,297 term births, and 4412 term low birthweight and 194,732 term normal birthweight infants. First or second trimester exposure to individual pesticides (e.g., glyphosates, paraquat, imidacloprid) or exposure to 2 or more pesticides in the three chemical classes were associated with a small increase (3⁻7%) in risk for preterm birth; associations were stronger for female offspring. We did not find associations between term low birthweight and exposure to pesticides other than myclobutanil (OR: 1.11; 95% CI: 1.04⁻1.20) and possibly the pyrethroids class. Our improved exposure assessment revealed that first and second trimester exposure to pesticides is associated with preterm delivery but is rarely linked with term low birthweight.
    [Ling C, Liew Z, von Ehrenstein OS, Heck JE, et al. 2018. Toxics. 6(3). pii: E41]
  • Association of reproductive disorders and male congenital anomalies with environmental exposure to endocrine active pesticides.
    There is growing evidence that environmental exposure to pesticides may increase the risk of developing reproductive and developmental disorders. This study determined the prevalence and risk of developing gestational disorders and male congenital genitourinary malformations in areas with distinct exposure to pesticides, many of them with potential endocrine disrupting properties. A population-based case-control study was carried out on pregnant women and male children living in ten health districts of Andalusia classified as areas of high and low environmental exposure to pesticides according to agronomic criteria. The study population included 45,050 cases and 950,620 controls matched for age and health district. Data were collected from computerized hospital records between 1998 and 2005. Prevalence rates and risk of miscarriage, low birth weight, hypospadias, cryptorchidism and micropenis were significantly greater in areas with higher use of pesticides in relation to those with lower use, thus supporting and extending previous information.
    [García J, Ventura MI, Requena M, Hernández AF, et al. 2017. Reprod Toxicol. 71:95-100.]
  • Combined exposure to low doses of pesticides causes decreased birth weights in rats
    Decreased birth weight is a common effect of many pesticides in reproductive toxicity studies, but there are no empirical data on how pesticides act in combination on this endpoint. We hypothesized that a mixture of six pesticides (cyromazine, MCPB, pirimicarb, quinoclamine, thiram, and ziram) would decrease birth weight, and that these mixture effects could be predicted by the Dose Addition model. Data for the predictions were obtained from the Draft Assessment Reports of the individual pesticides. A mixture of equi-effective doses of these pesticides was tested in two studies in Wistar rats, showing mixture effects in good agreement with the additivity predictions. Significantly lower birth weights were observed when compounds were present at individual doses below their no-observed adverse effect levels (NOAELs). These results emphasize the need for cumulative risk assessment of pesticides to avoid potentially serious impact of mixed exposure on prenatal development and pregnancy in humans.
    [Hass U, Christiansen S, Axelstad M, Scholze M, Boberg J. 2017. Reprod Toxicol. 72:97-105]
  • Exposure to PFOA and PFOS and fetal growth: a critical merging of toxicological and epidemiological data.
    Toxicological and epidemiological evidence on the association between perfluorooctanoic acid (PFOA) or perfluorooctane sulfonic acid (PFOS) and birth/fetal weight was assessed. An extensive search for toxicological information in rats and mice, and a systematic search for epidemiological evidence were conducted. The linear regression coefficient (LRC) of birth weight (BrthW) on PFOA/PFOS was considered, and separate random effects meta-analyses for untransformed (i.e. not mathematically transformed) and log-transformed values were performed. Toxicological evidence: PFOA: 12 studies (21 datasets) in mice showed statistically significant lower birth/fetal weights from 5 mg/kg body weight per day. PFOS: most of the 13 studies (19 datasets) showed lower birth/fetal weights following in utero exposure. Epidemiological evidence: Sixteen articles were considered. The pooled LRC for a 1 ng/mL increase in untransformed PFOA (12 studies) in maternal plasma/serum was -12.8 g (95% CI -23.2; 2.4), and -27.1 g (95% CI -50.6; -3.6) for an increase of 1 loge ng/mL PFOA (nine studies). The pooled LRC for untransformed PFOS (eight studies) was -0.92 g (95%CI -3.4; 1.6), and for an increase of 1 loge ng/mL was -46.1(95% CI -80.3; -11.9). No consistent pattern emerged for study location or timing of blood sampling. Epidemiological and toxicological evidence suggests that PFOA and PFOS elicit a decrease in BrthW both in humans and rodents. However, the effective animal extrapolated serum concentrations are 102-103 times higher than those in humans. Thus, there is no quantitative toxicological evidence to support the epidemiological association, thus reducing the biological plausibility of a causal relationship.
    [Negri E, Metruccio F, Guercio V, Tosti L, et al. 2017. Crit Rev Toxicol. 47(6):482-508]
  • Glyphosate and Paraquat in Maternal and Fetal Serums in Thai Women
    This longitudinal study measured the glyphosate and paraquat concentrations found in maternal and umbilical cord serum in 82 pregnant women who gave birth in three provinces of Thailand.Through questionnaires and biological samples collected at childbirth, factors such as personal characteristics, family members occupation, agricultural activities, and herbicide use in agricultural work were evaluated as predictors of glyphosate and paraquat levels in the pregnant women. Statistical analysis used univariate and binary multiple logistic regression, where the outcome was the probability of exposure to paraquat or glyphosate above the limit of detection associated with occupation and household factors.The glyphosate concentrations in the pregnant women's serum at childbirth (median: 17.5, range: 0.2-189.1 ng/mL) were significantly higher (P < .007) than those in the umbilical cord serum (median: 0.2, range: 0.2-94.9 ng/mL). However, the paraquat concentrations in the serum of the pregnant women at childbirth (83% ≤limit of detection [LOD], with maximum of 58.3 ng/mL) were similar to those in the umbilical cord serum (80% <LOD, with maximum of 47.6 ng/mL). Women with glyphosate levels >LOD in serum at childbirth were 11.9 times more likely to report work as an agriculturist (P < .001), 3.7 times more likely to live near agricultural areas (P = .006), and 5.9 times more likely to have a family member who worked in agriculture (P < .001). The only factors affecting paraquat exposures in pregnant women at childbirth were reporting the agricultural activity of digging in farm soil and working in the agricultural fields in the third trimester of pregnancy.These results show that pregnant women who work in agriculture or live in families that work in agriculture have higher exposures to the herbicides glyphosate and paraquat. The potential for long-term health impacts of these prenatal exposures to children should be evaluated, and greater regulation of the sale and use of herbicides should be considered in Thailand.
    [Kongtip P, Nankongnab N, Phupancharoensuk R, et al. 2017. J Agromedicine. 22(3):282-289. ]
  • Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in human breast milk and associated health risks to nursing infants in Northern Tanzania
    This is the first study to report organochlorines (OCs), including chlorinated pesticides (OCPs) and polychlorinated biphenyls (PCBs) in human milk from Tanzania. The main aims of this study were to assess the level of contamination and the possible health risks related to OC exposure in nursing infants from the Northern parts of Tanzania. Ninety-five healthy mother-infant couples attending Mount Meru Regional Referral Hospital (MMRRH), Arusha, Tanzania, were assessed for associations between maternal/infant characteristics, i.e. mother's age, BMI, gestational weight gain, occupation, residence and fetal growth parameters and breast milk levels of OCPs, such as dichlorodiphenyltrichloroethane (DDT) and its metabolites, dieldrin and PCBs. p,p'-DDE and p,p'-DDT were detected in 100% and 75% of the breast milk samples, respectively, and ranged between 24 and 2400ng/g lipid weight (lw) and
    [Müller MH, Polder A, Brynildsrud OB, Karimi M, et al. 2017. Environ Res. 154:425-434]
  • Relationship between pesticide exposure and adverse pregnancy outcomes among reproductive couples in rural areas of China
    To analyze the association between pesticide exposure and adverse pregnancy outcomes in women from the rural areas of China. Data of "National Free Preconception Health Examination Project (NFPHEP)" from January 2010 to December 2012 was used for analysis. A total of 248 501 families that were planning to deliver a baby in the next 6 months were enrolled. Data on paternal exposure to pesticides before or during pregnancy was collected through questionnaires, with related outcomes on pregnancy recorded by doctors. Among all the 248 501 participants, 1 806 (0.74%) women and 2 653 (1.09%) men reported to have been exposed to pesticide before pregnancy, with 505 (0.21%) reported of having been exposed to pesticide during the period of pregnancy. Maternal exposure to pesticide was found a risk factor related to stillbirth (OR=3.37, 95%CI: 2.05-5.55), peculiar smell pregnancy (OR=3.17, 95%CI:1.18-8.55) and low birth weight (OR=7.56, 95% CI: 5.36-10.66). Paternal exposure to pesticide was also found related to miscarriage (OR=1.37, 95% CI: 1.03-1.80), low birth weight (OR=3.65, 95% CI:1.51-8.84), or giant infant (OR=0.64, 95%CI: 0.44-0.93). Maternal exposure to pesticide during pregnancy appeared a risk factor on miscarriage (OR=4.65, 95% CI: 3.47-6.24). Other adverse outcomes on pregnancy would include premature birth and high birth weight.Parental pesticide exposure appeared a risk factor on stillbirth, peculiar smell pregnancy, low birth weight and miscarriage.
    [Qu YM, Chen S, Li JJ, Jin RR, et al. 2017. Zhonghua Liu Xing Bing Xue Za Zhi. 38(6):732-736]
  • Glyphosate and adverse pregnancy outcomes, a systematic review of observational studies
    A study in frog and chicken embryos, and reports of a high incidence of birth defects in regions of intensive GM-soy planting have raised concerns on the teratogenic potential of glyphosate-based herbicides. These public concerns prompted us to conduct a systematic review of the epidemiological studies testing hypotheses of associations between glyphosate exposure and adverse pregnancy outcomes including birth defects.A case-control study on the association between pesticides and congenital malformations in areas of extensive GM soy crops in South America, and reports on the occurrence of birth defects in these regions were reviewed. The search found ten studies testing associations between glyphosate and birth defects, abortions, pre-term deliveries, small for gestational date births, childhood diseases or altered sex ratios. Two additional studies examined changes of time-to-pregnancy in glyphosate-exposed populations. Except for an excess of Attention Deficit Hyperactivity Disorder - ADHD (OR = 3.6, 1.3-9.6) among children born to glyphosate appliers, no significant associations between this herbicide and adverse pregnancy outcomes were described. Evidence that in South American regions of intensive GM-soy planting incidence of birth defects is high remains elusive.Current epidemiological evidence, albeit limited to a few studies using non-quantitative and indirect estimates and dichotomous analysis of exposures, does not lend support to public concerns that glyphosate-based pesticides might pose developmental risks to the unborn child. Nonetheless, owing to methodological limitations of existing analytical observational studies, and particularly to a lack of a direct measurement (urine and/or blood levels), or an indirect estimation of exposure that has proven valid, these negative findings cannot be taken as definitive evidence that GLY, at current levels of occupational and environmental exposures, brings no risk for human development and reproduction.
    [de Araujo JS, Delgado IF, Paumgartten FJ. 2016. BMC Public Health. 16:472]
  • Low-Dose Agrochemicals and Lawn-Care Pesticides Induce Developmental Toxicity in Murine Preimplantation Embryos
    Lawn pesticide products containing herbicides and fertilizers (such as “weed and feed” products) tested on mice show increased risk of infertility, miscarriage and birth defects at very low dosages.
    [Greenlee, A., et al. 2004. Environmental Health Perspectives, 112(6): 703-709.]