

Chemical Factsheet

Malathion

General Information

- Fact Sheet: [Malathion.pdf](#)
- Product Names:
 - Fyfanon** (Cheminova)
 - Vegetables & Fruit Trees Spray** (Bonide Products), formulated with [Carbaryl](#)
 - Alco** (Amvac Chemical)
 - ULV Mosquitocide 731** (Clarke Mosquito Control Products), formulated with [Resmethrin](#), [Piperonyl butoxide](#) (some formulations)
 - Ferti-Lome** (Voluntary Purchasing Group), formulated with [PCNB](#), [Captan](#) (some formulations)
- Chemical Class: Organophosphate insecticide
- Uses: Alfalfa; apricot; asparagus; avocado; barley; bean (succulent and dry); beets (table); birdsfoot trefoil; blackberry; blueberry; boysenberry; broccoli; broccoli raab; Brussels sprout; cabbage (including Chinese); carrot; cauliflower; celery; chayote; cherry; chestnut; clover; collards; corn (field; sweet; and pop); cotton; cucumber; currant; dandelion; date; dewberry; eggplant; endive; escarole; potato; fig; garlic; gooseberry; grape; grapefruit; guava; hay grass; hops; horseradish; kale; kohlrabi; kumquat; leek; lemon; lespedeza; lettuce (head and leaf); lime; loganberry; lupine; macadamia nut; mango; melon; mint; mushroom; mustard greens; nectarines; oats; okra; onion; orange; papaya; parsley; parsnip; passion fruit; pea; peach; pear; pecan; pepper; pineapple; pumpkin; radish; raspberry; rice; rutabaga; rye; salsify; shallot; sorghum; spinach; spring wheat; squash; strawberry; sweet potato; Swiss chard; tangelo; tangerine; tomato (including tomatillo); turnip; vetch; walnut; watercress; watermelon; wheat (spring, and winter); wild rice; and yam; indoor stored commodity treatment and empty storage facilities for barley, corn, oats, rye, and wheat. Homeowner outdoor uses: ornamental flowering plants, ornamental lawns, ornamental turf, vegetable gardens and fruit trees; ornamental flowers, shrubs, and trees; Christmas tree plantations; slash pine; ornamental nursery stock; woody plants; building perimeters (domestic dwellings as well as commercial structures); uncultivated nonagricultural areas; outdoor garbage dumps; intermittently flooded areas; irrigation systems; pastures; and rangeland. Treatment of headlice and their eggs.
- Alternatives: [Organic agriculture](#), [Least-toxic outdoor residential control](#), [Least-toxic head lice control](#), [Least-toxic mosquito control](#)
- Beyond Pesticides rating: [Toxic](#)

Health and Environmental Effects

See citations at end of document.

- Cancer: Suggestive evidence (1)
- Endocrine Disruption: Yes (2)
- Reproductive Effects: Yes (3)
- Neurotoxicity: Yes (4)

- Kidney/Liver Damage: Yes (5)
- Sensitizer/ Irritant: Yes (6)
- Birth/Developmental: Yes (7)
- Detected in Groundwater: Yes (5)
- Potential Leacher: Yes (5)
- Toxic to Birds: Yes (8)
- Toxic to Fish/Aquatic Organisms: Yes (8)
- Toxic to Bees: Yes (8)

Residential Uses as Found in the ManageSafe™ Database

- [Bagworms](#)
- [Head Lice](#)
- [Cockroaches](#)
- [Fleas](#)
- [Mosquitoes](#)
- [Thrips](#)
- [Aphids](#)

Additional Information

- Regulatory Status:
 - [Beyond Pesticides' Comments \(October 2024\)](#)
 - [Biological Evaluation Chapters for Malathion ESA Assessment \(2017\)](#)
 - [Beyond Pesticides' Experimental Use Permits comments \(3/2017\)](#)
 - [Beyond Pesticides' Human Health Draft Risk Assessment for Registration Review comments \(12/2016\)](#)
 - [EPA Reregistration Eligibility Decision \(RED\) signed \(7/2006\)](#)
 - NRDC and friends revised risk assessment [comments](#) (2005)
 - Beyond Pesticides' Cumulative Risk Organophosphate [comments](#) (2002)
 - Beyond Pesticides' preliminary risk assessment [comments](#) (2000)
- Supporting information:
 - [Asthma, Children and Pesticides](#) (Beyond Pesticides)
 - [NCAP Malathion Factsheet](#) (Northwest Coalition for Alternatives to Pesticides)
 - [Extoxnet Malathion Factsheet](#) (Extension Toxicology Network)
 - [PAN Pesticides Database: Malathion](#) (Pesticide Action Network)
- Studies [compiled from the [Pesticide-Induced Diseases Database](#)]
 - [Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol.](#) 2015 May; 16(5):490-1.
 - [Cytogenetic evaluation of malathion-induced toxicity in Sprague-Dawley rats.](#) Moore PD, Patlolla AK, Tchounwou PB. 2011. Mutat Res. 725(1-2):78-82
 - [Acute Illnesses Associated With Pesticide Exposure at Schools.](#) Alarcon, W. et. al. 2005. *Journal of the American Medical Association* 294(4): 455-465.
 - [Comparison of pesticide levels in carpet dust and self-reported pest treatment practices in four US sites.](#) Colt, J. et. al. 2004. *Journal of Exposure Analysis and Environmental Epidemiology* 14:74-83
 - [US EPA's regulatory pesticide evaluations need clearer guidelines for considering mammary gland tumors and other mammary gland effects.](#) Cardona, B. and Rudel, R.A., 2020. *Molecular and Cellular Endocrinology*, p.110927.
 - [Prenatal and infant exposure to ambient pesticides and autism spectrum disorder in children: population based case-control study.](#) von Ehrenstein, et al. 2019. *BMJ*

2019;364:I962

- [Biomonitoring of Toxic Effects of Pesticides in Occupationally Exposed Individuals.](#).. Arshad M, Siddiq M, Rashid S, Hashmi I, et al. 2016. Saf Health Work. 7(2):156-60
- [Dietary Intake and Its Contribution to Longitudinal Organophosphorus Pesticide Exposure in Urban/suburban Children.](#).. Lu C, Barr DB, Pearson MA, Waller LA. 2008. Environ Health Perspect. 216(4):537-42.
- [Genetic susceptibility loci, pesticide exposure and prostate cancer risk.](#).. Koutros S, Berndt SI, Hughes Barry K et al. 2013. PLoS One. 8(4):e58195
- [Impact of isomalathion on malathion cytotoxicity and genotoxicity in human HepaRG cells.](#).. Josse R, Sharanek A, Savary CC, Guillouzo A. 2014. Chem Biol Interact. 209:68-76
- [In vitro-in vivo correlations for endocrine activity of a mixture of currently used pesticides.](#).. Taxvig C, Hadrup N, Boberg J, et al. 2013. Toxicol Appl Pharmacol.272(3):757-66
- [Association of Pesticides and Kidney Function among Adults in the US Population 2001–2010.](#) Wan, E.T., Darssan, D., Karatela, S., Reid, S. and Osborne, N. Int. J. Environ. Res. Public Health.
- [Breast carcinogenesis induced by organophosphorous pesticides.](#) Calaf, G.M., 2022. Advances in Pharmacology (San Diego, Calif.), 96, pp.71-117.
- [Exposure to pesticide components causes recurrent pregnancy loss by increasing placental oxidative stress and apoptosis: a case-control study.](#) El-Baz, M.A., Amin, A.F. and Mohany, K.M., 2023. Scientific Reports, 13(1), p.9147.
- [Pesticide exposure and increased breast cancer risk in women population studies.](#) Panis, C. and Lemos, B. (2024) Pesticide exposure and increased breast cancer risk in women population studies, Science of The Total Environment. Available at: <https://www.sciencedirect.com/science/article/pii/S0048969724031358?via%3Dihub>.
- [Depressive symptoms and suicide attempts among farmers exposed to pesticides.](#) Zheng, R. et al. (2024) Depressive symptoms and suicide attempts among farmers exposed to pesticides, Environmental Toxicology and Pharmacology. Available at: <https://www.sciencedirect.com/science/article/pii/S1382668924001017?via%3Dihub>.
- [Exposure to pesticides, persistent and non – persistent pollutants in French 3.5-year-old children: Findings from comprehensive hair analysis in the ELFE national birth cohort.](#) Macheka, L. et al. (2024) Exposure to pesticides, persistent and non – persistent pollutants in French 3.5-year-old children: Findings from comprehensive hair analysis in the ELFE national birth cohort, Environment International. Available at: <https://www.sciencedirect.com/science/article/pii/S0160412024004677>.
- [Pre-Conception And First Trimester Exposure To Pesticides And Associations With Stillbirth.](#) Furlong, M. et al. (2024) Pre-conception and first trimester exposure to pesticides and associations with stillbirth, American Journal of Epidemiology. Available at: <https://academic.oup.com/aje/advance-article-abstract/doi/10.1093/aje/kwae198/7714541>
- [Chronic kidney disease from agricultural communities—association and accumulation of hexachlorobenzene, malathion, and parathion pesticides.](#) Verma, J. et al. (2024) Chronic kidney disease from agricultural communities-association and accumulation of hexachlorobenzene, malathion, and parathion pesticides, Toxicology and Environmental Health Sciences. Available at: <https://link.springer.com/article/10.1007/s13530-024-00222-y>.
- [Organochlorine and organophosphorous pesticide residues in ground water and surface waters of Kanpur, Uttar Pradesh, India.](#) Sankararamakrishnan, N., Sharma, A.K. and Sanghi, R. (2005) Organochlorine and organophosphorous pesticide residues in ground water and surface waters of Kanpur, Uttar Pradesh, India, Environment International. Available at: <https://www.sciencedirect.com/science/article/abs/pii/S0160412004001394>.

- [Malathion insecticide resistance in Aedes aegypti: laboratory conditions and in situ experimental approach through adult entomological surveillance](#). de Souza Leandro, A. (2020) Malathion insecticide resistance in Aedes aegypti: laboratory conditions and in situ experimental approach through adult entomological surveillance, *Tropical Medicine & International Health*. Available at: <https://onlinelibrary.wiley.com/doi/10.1111/tmi.13474>.
- [Long-term and low-dose malathion exposure causes cognitive impairment in adult mice: evidence of hippocampal mitochondrial dysfunction, astrogliosis and apoptotic events](#). dos Santos, A.A., Naime, A.A., de Oliveira, J. et al. Long-term and low-dose malathion exposure causes cognitive impairment in adult mice: evidence of hippocampal mitochondrial dysfunction, astrogliosis and apoptotic events. *Arch Toxicol* 90, 647–660 (2016). <https://doi.org/10.1007/s00204-015-1466-0>
- [Crocin-protected malathion-induced spatial memory deficits by inhibiting TAU protein hyperphosphorylation and antiapoptotic effects](#). Mohammadzadeh, L. et al. (2019) 'Crocin-protected malathion-induced spatial memory deficits by inhibiting TAU protein hyperphosphorylation and antiapoptotic effects', *Nutritional Neuroscience*, 23(3), pp. 221–236. doi: 10.1080/1028415X.2018.1492772.
- [Impact of Endocrine Disrupting Pesticide Use on Obesity: A Systematic Review](#). Pérez-Bermejo, M. et al. (2024) Impact of Endocrine Disrupting Pesticide Use on Obesity: A Systematic Review, *Biomedicines*. Available at: <https://www.mdpi.com/2227-9059/12/12/2677>.
- .
- [Pesticide-Induced Inflammation at a Glance](#). Lopes-Ferreira, M. et al. (2023) 'Pesticide-induced inflammation at a glance', *Toxics*, 11(11), p. 896. doi:10.3390/toxics11110896.
- [Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers](#). B.D. Banerjee, V. Seth, A. Bhattacharya, S.T. Pasha, A.K. Chakraborty, Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers, *Toxicology Letters*, Volume 107, Issues 1-3, 1999, Pages 33-47, ISSN 0378-4274, [https://doi.org/10.1016/S0378-4274\(99\)00029-6](https://doi.org/10.1016/S0378-4274(99)00029-6).
- [A cocktail of contaminants: how mixtures of pesticides at low concentrations affect aquatic communities](#). Relyea R. A. (2009). A cocktail of contaminants: how mixtures of pesticides at low concentrations affect aquatic communities. *Oecologia*, 159(2), 363–376. <https://doi.org/10.1007/s00442-008-1213-9>
- [Prenatal residential proximity to endocrine disrupting agricultural pesticides and menstrual cycle characteristics among Latina adolescents in California](#). Paul, J. et al. (2025) Prenatal residential proximity to endocrine disrupting agricultural pesticides and menstrual cycle characteristics among Latina adolescents in California, *American Journal of Epidemiology*. Available at: <https://academic.oup.com/aje/advance-article/doi/10.1093/aje/kwaf059/8083004>.
- [Maternal exposure to the mixture of organophosphorus pesticides induces reproductive dysfunction in the offspring](#). Yu, Y., Yang, A., Zhang, J., & Hu, S. (2013). Maternal exposure to the mixture of organophosphorus pesticides induces reproductive dysfunction in the offspring. *Environmental toxicology*, 28(9), 507–515. <https://doi.org/10.1002/tox.20741>
- [Pesticide use and risk of Hodgkin lymphoma: results from the North American Pooled Project \(NAPP\)](#). Latifovic, L., Freeman, L. E. B., Spinelli, J. J., Pahwa, M., Kachuri, L., Blair, A., Cantor, K. P., Zahm, S. H., Weisenburger, D. D., McLaughlin, J. R., Dosman, J. A., Pahwa, P., Koutros, S., Demers, P. A., & Harris, S. A. (2020). Pesticide use and risk of Hodgkin lymphoma: results from the North American Pooled Project (NAPP). *Cancer causes & control : CCC*, 31(6), 583–599. <https://doi.org/10.1007/s10552-020-01301-4>
- [Adverse Effects of Pesticides on the Ovary: Evidence from Epidemiological and Toxicological Studies](#). Wang, L., Ma, X. and Liu, J. (2025) Adverse Effects of Pesticides on the Ovary: Evidence from Epidemiological and Toxicological Studies, *Environment &*

Health. Available at: <https://pubs.acs.org/doi/full/10.1021/ envhealth.4c00243>.

- [Effects of the insecticides malathion and diazinon on the early oogenesis in mice in vitro.](#) Bonilla, E., Hernández, F., Cortés, L., Mendoza, M., Mejía, J., Carrillo, E., Casas, E. and Betancourt, M. (2008), Effects of the insecticides malathion and diazinon on the early oogenesis in mice in vitro. *Environ. Toxicol.*, 23: 240-245.
<https://doi.org/10.1002/tox.20332>
- [Differential effects of herbicides atrazine and fenoxaprop-ethyl, and insecticides diazinon and malathion, on viability and maturation of porcine oocytes in vitro.](#) Casas, E., Bonilla, E., Ducolomb, Y., & Betancourt, M. (2010). Differential effects of herbicides atrazine and fenoxaprop-ethyl, and insecticides diazinon and malathion, on viability and maturation of porcine oocytes in vitro. *Toxicology in vitro : an international journal published in association with BIBRA*, 24(1), 224-230. <https://doi.org/10.1016/j.tiv.2009.09.004>
- [The effect of follicular fluid pesticides and polychlorinated biphenyls concentrations on intracytoplasmic sperm injection \(ICSI\) embryological and clinical outcome.](#) Al-Hussaini, T. K., Abdelaleem, A. A., Elnashar, I., Shabaan, O. M., Mostafa, R., El-Baz, M. A. H., El-Deek, S. E. M., & Farghaly, T. A. (2018). The effect of follicular fluid pesticides and polychlorinated biphenyls concentrations on intracytoplasmic sperm injection (ICSI) embryological and clinical outcome. *European journal of obstetrics, gynecology, and reproductive biology*, 220, 39-43. <https://doi.org/10.1016/j.ejogrb.2017.11.003>
- [Protective effect of intravenous lipid emulsion treatment on malathion-induced ovarian toxicity in female rats.](#) Ozsoy, A. Z., Nursal, A. F., Karsli, M. F., Uysal, M., Alici, O., Butun, I., Tas, U., & Delibas, I. B. (2016). Protective effect of intravenous lipid emulsion treatment on malathion-induced ovarian toxicity in female rats. *European review for medical and pharmacological sciences*, 20(11), 2425-2434.
- [In vitro effect of malathion and diazinon on oocytes fertilization and embryo development in porcine.](#) Ducolomb, Y., Casas, E., Valdez, A. et al. In vitro effect of malathion and diazinon on oocytes fertilization and embryo development in porcine. *Cell Biol Toxicol* 25, 623-633 (2009). <https://doi.org/10.1007/s10565-008-9117-3>
- [Monitoring the aquatic toxicity of mosquito vector control spray pesticides to freshwater receiving waters.](#) Phillips, B. M., Anderson, B. S., Voorhees, J. P., Siegler, K., Denton, D., TenBrook, P., Larsen, K., Isorena, P., & Tjeerdenma, R. S. (2014). Monitoring the aquatic toxicity of mosquito vector control spray pesticides to freshwater receiving waters. *Integrated environmental assessment and management*, 10(3), 449-455.
<https://doi.org/10.1002/ieam.1534>
- [Pesticide Use and Relative Leukocyte Telomere Length in the Agricultural Health Study.](#) Andreotti G, Hoppin JA, Hou L, Koutros S, Gadalla SM, et al. (2015) Pesticide Use and Relative Leukocyte Telomere Length in the Agricultural Health Study. *PLOS ONE* 10(7): e0133382. <https://doi.org/10.1371/journal.pone.0133382>
- [Pesticide residue in cucumber-exposed plants, and its associated effects on soil nematode population.](#) Imonikebe, P. et al. (2025) Pesticide residue in cucumber-exposed plants, and its associated effects on soil nematode population, *Advances in Modern Agriculture*. Available at:
https://www.researchgate.net/publication/390847748_Pesticide_residue_in_cucumber-exposed_plants_and_its_associated_effects_on_soil_nematode_population.
- [Cytotoxicity and DNA damage of five organophosphorus pesticides mediated by oxidative stress in PC12 cells and protection by vitamin E.](#) Lu, X. T. et al. (2012) 'Cytotoxicity and DNA damage of five organophosphorus pesticides mediated by oxidative stress in PC12 cells and protection by vitamin E', *Journal of Environmental Science and Health, Part B*, 47(5), pp. 445-454. doi: 10.1080/03601234.2012.663312.
- [Mapping pesticide-induced metabolic alterations in human gut bacteria.](#) Chen, L. et al. (2025) Mapping pesticide-induced metabolic alterations in human gut bacteria, *Nature*

Communications. Available at: <https://www.nature.com/articles/s41467-025-59747-6>.

- [Occurrence of Current-Use Pesticides in Paired Indoor Dust, Drinking Water, and Urine Samples from the United States: Risk Prioritization and Health Implications](#). Xie, Y., Li, J., Salamova, A., & Zheng, G. (2025). Occurrence of Current-Use Pesticides in Paired Indoor Dust, Drinking Water, and Urine Samples from the United States: Risk Prioritization and Health Implications. *Environmental science & technology*, 59(25), 12507–12519. <https://doi.org/10.1021/acs.est.5c00961>
- [Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films](#). Wang, Ting & Yu, Congcong & Chu, Qiao & Wang, Fenghe & Lan, Tao & Wang, Jingfeng. (2019). Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films. *Chemosphere*. 244. 125491. [10.1016/j.chemosphere.2019.125491](https://doi.org/10.1016/j.chemosphere.2019.125491).
- [Associations of specific pesticides and incident rheumatoid arthritis among female spouses in the Agricultural Health Study](#). Parks, C. et al. (2025) Associations of specific pesticides and incident rheumatoid arthritis among female spouses in the Agricultural Health Study, *Arthritis & Rheumatology*. Available at: <https://acrjournals.onlinelibrary.wiley.com/doi/10.1002/art.43318>.
- [Urinary pesticide biomarkers from adolescence to young adulthood in an agricultural setting in Ecuador: Study of secondary exposure to pesticides among children, adolescents, and adults \(ESPINA\) 2016 and 2022 examination data](#). Parajuli, R. et al. (2025) Urinary pesticide biomarkers from adolescence to young adulthood in an agricultural setting in Ecuador: Study of secondary exposure to pesticides among children, adolescents, and adults (ESPINA) 2016 and 2022 examination data, *Data in Brief*. Available at: <https://www.sciencedirect.com/science/article/pii/S2352340925006067>.
- [Prospective association between dietary pesticide exposure profiles and postmenopausal breast-cancer risk in the NutriNet-Santé cohort](#). Rebouillat, P., Vidal, R., Cravedi, J. P., Taupier-Letage, B., Debrauwer, L., Gamet-Payrastre, L., Touvier, M., Deschasaux-Tanguy, M., Latino-Martel, P., Hercberg, S., Lairon, D., Baudry, J., & Kesse-Guyot, E. (2021). Prospective association between dietary pesticide exposure profiles and postmenopausal breast-cancer risk in the NutriNet-Santé cohort. *International journal of epidemiology*, 50(4), 1184–1198. <https://doi.org/10.1093/ije/dyab015>
- [Temporal trends of agricultural organophosphate pesticide use in California and proximity to pregnant people in 2021](#). Rotkin-Ellman, M., Carpenter, C., Richardson, M.J. et al. Temporal trends of agricultural organophosphate pesticide use in California and proximity to pregnant people in 2021. *BMC Public Health* 25, 3121 (2025). <https://doi.org/10.1186/s12889-025-23939-y>
- [Pesticides as risk factors for head and neck cancer: A review](#). Brasil VLM, Ramos Pinto MB, Bonan RF, Kowalski LP, da Cruz Perez DE. Pesticides as risk factors for head and neck cancer: A review. *J Oral Pathol Med*. 2018; 47: 641–651. <https://doi.org/10.1111/jop.12701>
- [The potential endocrine disruption of pesticide transformation products \(TPs\): The blind spot of pesticide risk assessment](#). Ji, C., Song, Q., Chen, Y., Zhou, Z., Wang, P., Liu, J., Sun, Z., & Zhao, M. (2020). The potential endocrine disruption of pesticide transformation products (TPs): The blind spot of pesticide risk assessment. *Environment international*, 137, 105490. <https://doi.org/10.1016/j.envint.2020.105490>

Gateway Health and Environmental Effects Citations

1. EPA weight-of-evidence category, "Suggestive evidence of carcinogenicity but not sufficient to assess human carcinogenic potential." US EPA, 2005. Office of Pesticide Programs. List of Chemicals

Evaluated for Carcinogenic Potential. May 10, 2005. <http://www.epa.gov/pesticides/carlist/>

2. Colborn, T., D. Dumanoski, and J.P. Myers. 1996. Our Stolen Future: Are We Threatening Our Fertility, Intelligence, and Survival? New York: Dutton. <http://ourstolenfuture.org/Basics/chemlist.htm>

3. Frazier, L. and M.L. Hage. 2001. Reproductive Hazards of the Workplace. Europe: Wiley. Table 10: Partial List of Reproductive Toxins.
<https://web.archive.org/web/20100624221623/http://www.biosci.osu.edu/safety/CHP/Tables2001/Table10-11-00.pdf>.

4. US EPA, 2000. Table 1: Toxicity Data by Category for Chemicals Listed under EPCRA Section 313. Toxic Release Inventory (TRI) Program.
https://www.epa.gov/sites/production/files/documents/hazard_categories.pdf

5. Extension Toxicology Network (EXTOXNET) Pesticide Information Profiles.
<http://extoxnet.orst.edu/pips/ghindex.html>

6. Northwest Coalition for Alternatives to Pesticides (NCAP), Pesticide Factsheets.
<http://www.pesticide.org/pesticide-factsheets>.

7. Beyond Pesticides ChemWatch Factsheets. (Cited under factsheets on [Beyond Pesticides Gateway](#); see top of individual chemical page)

8. US EPA, Office of Prevention, Pesticides and Toxic Substances, Reregistration Eligibility Decisions (REDs), Interim REDS (iREDs) and RED Factsheets.
<https://archive.epa.gov/pesticides/reregistration/web/html/status.html>.

Factsheet generated on February 1, 2026