
The Environmental Risks of neonicotinoid pesticides: a 
review of the evidence post-2013 
 

EXECUTIVE SUMMARY 

Neonicotinoid pesticides were first introduced in the mid-1990s and since then their use has grown 

rapidly so that they have become the most widely used class of insecticides in the world, with the 

majority being used as seed coatings. Neonicotinoids are water-soluble, and so a small quantity 

applied to a seed will dissolve when in contact with water in the soil and be taken up by the roots of 

the developing plant. Once inside the plant it becomes systemic and is found in vascular tissues and 

foliage, providing protection against herbivorous insects. This prophylactic use of neonicotinoids has 

become extremely widespread on a wide range of arable crops across much of the developed world.  

However, only approximately 5% of the neonicotinoid active ingredient is taken up by crop plants 

and most instead disperses into the wider environment. Since the mid-2000s numerous studies have 

raised concerns that neonicotinoids may be having a negative effect on non-target organisms. In 

particular, neonicotinoids were associated with mass poisoning events of honeybees and were 

shown to have serious negative effects on honeybee and bumblebee fitness when consumed. In 

response to this growing body of evidence, the European Food Safety Authority (EFSA) was 

commissioned to produce risk assessments for the use of clothianidin, imidacloprid and 

thiamethoxam and their impact on bees. These risk assessments, published in January 2013, 

conclude that the use of these compounds on certain flowering crops poses a high risk to bees. On 

the basis of these findings, the European Union adopted a partial ban on these substances in May 

2013 which came into force on 1st December 2013. 

The purpose of this review is to collate and summarise scientific evidence published since 2013 that 

investigates the impact of neonicotinoids on non-target organisms and to bring it into one place to 

aid informed decision making. Due to international concern over the unintended impacts of 

neonicotinoids on wildlife, this topic has received a great deal of scientific attention in this three 

year period. As the restrictions were put in place because of the risk neonicotinoids pose to bees, 

much of the recent research work has naturally focussed on this group.  

Risks to bees 

Broadly, the EFSA risk assessments addressed risks of exposure to bees from neonicotinoids through 

various routes and the direct lethal and sublethal impact of neonicotinoid exposure. New scientific 

evidence is available in all of these areas, and it is possible to comment on the change in the 

scientific evidence since 2013 compared to the EFSA reports. This process is not meant to be a 

formal assessment of the risk posed by neonicotinoids in the manner of that conducted by EFSA. 

Instead it aims to summarise how the new evidence has changed our understanding of the likely 

risks to bees; is it lower, similar or greater than the risk perceived in 2013. With reference to the 

EFSA 2013 risk assessments baseline, advances in each considered area and their impact on the 

original assessment can be summarised thus: 

 Risk of exposure from pollen and nectar of treated flowering crops. The EFSA reports 

calculated typical exposure from flowering crops treated with neonicotinoids as seed 

dressings. Considerably more data are now available in this area, with new studies broadly 
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supporting the calculated exposure values. For bees, flowering crops pose a Risk Unchanged 

to that reported by EFSA 2013. 

 Risk from non-flowering crops and cropping stages prior to flowering. Non-flowering crops 

were considered to pose no risk to bees. No new studies have demonstrated that these non-

flowering crops pose a direct risk to bees. They remain a Risk Unchanged. 

 Risk of exposure from the drilling of treated seed and subsequent dust drift. Despite 

modification in seed drilling technology, available studies suggest that dust drift continues to 

occur, and that dust drift still represents a source of acute exposure and so is best 

considered a Risk Unchanged. 

 Risk of exposure from guttation fluid. Based on available evidence this was considered a low-

risk exposure path by EFSA 2013. New data have not changed this position and so it remains 

a Risk Unchanged. 

 Risk of exposure from and uptake of neonicotinoids in non-crop plants. Uptake of 

neonicotinoids by non-target plants was considered likely to be negligible, though a data gap 

was identified. Many studies have since been published demonstrating extensive uptake of 

neonicotinoids and their presence in the pollen, nectar and foliage of wild plants. Bees 

collecting pollen from neonicotinoid-treated crops can generally be expected to be exposed 

to the highest neonicotinoid concentrations, but non-trivial quantities of neonicotinoids are 

also present in pollen and nectar collected from wild plants, and this source of exposure may 

be much more prolonged than the flowering period of the crop. Exposure from non-target 

plants clearly represents a Greater Risk. 

 Risk of exposure from succeeding crops. A data gap was identified for this issue. Few studies 

have explicitly investigated this, but this area does represent some level of risk as 

neonicotinoids are now known to have the potential to persist for years in soil, and can be 

detected in crops multiple years after the last known application. However, as few data exist 

this is currently considered a Risk Unchanged. 

 Direct lethality of neonicotinoids to adult bees. Additional studies on toxicity to honeybees 

have supported the values calculated by EFSA. More data have been produced on 

neonicotinoid toxicity for wild bee species and meta-analyses suggest a broadly similar 

response. Reference to individual species is important but neonicotinoid lethality should be 

broadly considered a Risk Unchanged. 

 Sublethal effects of neonicotinoids on wild bees. Consideration of sublethal effects by EFSA 

was limited as there is no agreed testing methodology for the assessment of such effects. A 

data gap was identified. Exposure to neonicotinoid-treated flowering crops has been shown 

to have significant negative effects on free flying wild bees under field conditions and some 

laboratory studies continue to demonstrate negative effects on bee foraging ability and 

fitness using field-realistic neonicotinoid concentrations. Greater Risk. 

Within this context, research produced since 2013 suggest that neonicotinoids pose a similar to 

greater risk to wild and managed bees, compared to the state of play in 2013. Given that the initial 

2013 risk assessment was sufficient to impose a partial ban on the use of neonicotinoids on 

flowering crops, and given that new evidence either confirms or enhances evidence of risk to bees, it 

is logical to conclude that the current scientific evidence supports the extension of the moratorium, 

and that the extension of the partial ban to other uses of neonicotinoids should be considered. 

Broader risks to environmental health 

In addition to work on bees, our scientific understanding has also been improved in the following 

areas which were not previously considered by EFSA: 
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 Non-flowering crops treated with neonicotinoids can pose a risk to non-target organisms 

through increasing mortality in beneficial predator populations. 

 Neonicotinoids can persist in agricultural soils for several years, leading to chronic 

contamination and, in some instances, accumulation over time. 

 Neonicotinoids continue to be found in a wide range of different waterways including 

ditches, puddles, ponds, mountain streams, rivers, temporary wetlands, snowmelt, 

groundwater and in outflow from water processing plants. 

 Reviews of the sensitivity of aquatic organisms to neonicotinoids show that many aquatic 

insect species are several orders of magnitude more sensitive to these compounds than the 

traditional model organisms used in regulatory assessments for pesticide use. 

 Neonicotinoids have been shown to be present in the pollen, nectar and foliage of non-crop 

plants adjacent to agricultural fields. This ranges from herbaceous annual weeds to 

perennial woody vegetation. We would thus expect non-target herbivorous insects and non-

bee pollinators inhabiting field margins and hedgerows to be exposed to neonicotinoids. Of 

particular concern, this includes some plants sown adjacent to agricultural fields specifically 

for the purposes of pollinator conservation. 

 Correlational studies have suggested a negative link between neonicotinoid usage in 

agricultural areas and population metrics for butterflies, bees and insectivorous birds in 

three different countries. 

Overall, this recent work on neonicotinoids continues to improve our understanding of how these 

compounds move through and persist in the wider environment. These water soluble compounds 

are not restricted to agricultural crops, instead permeating most parts of the agricultural 

environments in which they are used and in some cases reaching further afield via waterways and 

runoff water. Field-realistic laboratory experiments and field trials continue to demonstrate that 

traces of residual neonicotinoids can have a mixture of lethal and sublethal effects on a wide range 

of taxa. Susceptibility varies tremendously between different taxa across many orders of magnitude, 

with some showing a negative response at parts per billion with others show no such effects at many 

thousands of parts per billion. Relative to the risk assessments produced in 2013 for clothianidin, 

imidacloprid and thiamethoxam which focussed on their effects on bees, new research strengthens 

arguments for the imposition of a moratorium, in particular because it has become evident that they 

pose significant risks to many non-target organisms, not just bees. Given the improvement in 

scientific knowledge of how neonicotinoids move into the wider environment from all crop types, a 

discussion of the risks posed by their use on non-flowering crops and in non-agricultural areas is 

urgently needed. 
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1. INTRODUCTION AND STATE OF PLAY 

Neonicotinoid pesticides were first introduced in the 1990s and since then their use has grown 

rapidly to become the most widely used class of insecticide in the world. This increase in popularity 

has largely occurred from the early 2000s onwards (Figure 1). This use has largely been driven by the 

adoption of seed treatments. Neonicotinoids are water-soluble, and so a small quantity applied to a 

seed will dissolve when in contact with water and be taken up by the roots of the developing plant. 

Once inside the plant it becomes systemic and is found in vascular tissues and foliage, providing 

protection against herbivorous insects. This prophylactic use of neonicotinoids has become 

extremely widespread – for example, between 79-100% of maize hectares in the United States in 

2011 were treated with a neonicotinoid seed dressing (Douglas and Tooker 2015).  

However, only approximately 5% of the neonicotinoid active ingredient is taken up by crop plants 

and most instead disperses into the wider environment. In recent years numerous authors have 

raised concerns about the impact neonicotinoids may have on non-target organisms. Neonicotinoids 

released in dust abraded by seed drilling machinery were implicated in mass poisonings of 

honeybees in Germany and Italy (Pistorius et al. 2009; Bortolotti et al. 2009), neonicotinoids were 

found in agricultural soils (Bonmatin et al. 2005) and also in the pollen and nectar of treated crops 

(Bonmatin et al. 2007). In 2012, two high profile studies were published that showed exposure to 

neonicotinoids in pollen and nectar could have serious effects on honeybee navigation and mortality 

(Henry et al. 2012) and bumblebee colony development and queen production (Whitehorn et al. 

2012). In response to the growing body of work the European Food Safety Authority (EFSA), the 

body with regulatory oversight for agricultural chemicals, was commissioned to produce a risk 

assessment on the three most widely used agricultural neonicotinoids (clothianidin, imidacloprid and 

thiamethoxam) and the risk that they posed to bees (EFSA 2013a; 2013b; 2013c). On the basis of the 

available evidence EFSA recommended a moratorium on the use of neonicotinoids on treated crops 

which was accepted and implemented by the European Commission at the end of 2013.  

This moratorium is due to conclude shortly. One of the specified objectives was to allow further 

research on the impact of neonicotinoids on bees in order to inform subsequent regulatory 

decisions. Since 2013, a great number of studies have been published that consider the impact of 

neonicotinoids on bees and also a wide range of other non-target taxa. Many large reviews of 

neonicotinoids impacts on non-target organisms have also been published, for example Nuyttens et 

al. (2013) on neonicotinoid contaminated dust, Godfray et al. (2014; 2015) on the risks 

neonicotinoids pose to pollinators, Bonmatin et al. (2015) on environmental fate of and exposure to 

neonicotinoids, Pisa et al. (2015) and Gibbons et al. (2015) on the impacts of neonicotinoids on non-

target terrestris organisms and Morrissey et al. (2015) on contamination of aquatic ecosystems with 

neonicotinoids and their impact on aquatic organisms, to name a few.  

The purpose of this review is to consider the scientific evidence published since 2013 that covers the 

impact of neonicotinoids on wild non-target organisms (therefore excluding the domesticated  

honeybee) and to bring it together into one place to aid informed decision making. It is not a formal 

risk assessment, though comparisons will be made with the knowledge base used in the EFSA risk 

assessments specifically and that which was known in 2013 more generally. The findings will be of 

interest to those considering the wider impact of neonicotinoid pesticide use when assessing their 

future use in agricultural environments.  
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Figure 1. Neonicotinoid sales by (a) product type, (b) use by crop and (c) active ingredient, from 1992 

to 2011. Data on use (a) is based on sales data from Minnesota. Data on crops and active ingredients 

are for the entire U.S., from United States Geological Survey. y-axes represent mass of neonicotinoid 

active ingredient in thousands or millions of kg. Reproduced from Douglas and Tooker (2015) 
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2. EVIDENCE FOR EXPOSURE TO NEONICOTINOID PESTICIDES 

2.1 Risk of exposure for non-target organisms from neonicotinoids applied directly to crops 

Due to their systemic nature, neonicotinoids applied to crops by any application method (e.g. seed 

dressing, foliar spray, soil drench) will be taken up by crop tissues and can subsequently be found in 

all parts of the treated plant (Simon-Delso et al. 2015). The EFSA (2103a; 2013b; 2013c) reports 

identify and discuss a number of exposure pathways through which bees can be exposed to 

neonicotinoids, where the risk of exposure is dependent on application rate, application type and 

crop type. However, knowledge about the extent and significance of these pathways was poor. Since 

then, a large number of studies have been published further documenting neonicotinoid exposure 

from treated crops. Important reviews include Nuyttens et al. (2013), Godfray et al. (2014), Long and 

Krupke (2015) and Bonmatin et al. (2015). 

 

2.1.1 Risk of exposure from pollen and nectar of treated flowering crops 

Using data from 30 (clothianidin), 16 (thiamethoxam) and 29 (imidacloprid) outdoor studies and 

known authorised application rates, EFSA (2013a; 2013b; 2013c) calculated expected residue rates in 

pollen and nectar of the studied crops (Table 1). Levels are variable but all are within one order of 

magnitude. Levels in pollen are consistently higher than levels in nectar. Godfray et al. (2014) 

reviewed 20 published studies to calculate an arithmetic mean maximum level of 1.9 ppb for nectar 

and 6.1 ppb for pollen in treated crops, in line with the EFSA findings.  

 

Table 1. Summary of expected residues in pollen and nectar of various neonicotinoid-treated 

flowering crops calculated by EFSA from the review of outdoor field trials. No nectar values are 

available for maize as this plant does not produce nectar. Blanks are where no minimum values were 

stated 

Crop Pesticide Residues in pollen (ng/g) Residues in nectar (ng/g) 

  Minimum Maximum Minimum Maximum 

Oilseed rape Clothianidin 5.95 19.04 5 16 
Sunflower Clothianidin  3.29  0.324 
Maize Clothianidin 7.38 36.88 n/a n/a 
Oilseed rape Imidacloprid 1.56 8.19 1.59 8.35 
Sunflower Imidacloprid  3.9  1.9 
Maize Imidacloprid 3.02 15.01 n/a n/a 
Cotton Imidacloprid 3.45 4.6 3.45 4.6 
Oilseed rape Thiamethoxam 4.592 19.29 0.648 2.72 
Sunflower Thiamethoxam 2.378 3.02 0.59 0.75 
Maize Thiamethoxam 13.419 21.513 n/a n/a 

 

Since 2014 a number of studies have been published which report neonicotinoid concentrations in 

the pollen and nectar of neonicotinoid-treated flowering crops. These results have been 

approximately in line with the concentrations reported by EFSA and Godfray et al. In oilseed rape 

treated with thiamethoxam, Botías et al. (2015) found average concentrations of 3.26 ng/g of 

thiamethoxam, 2.27 ng/g of clothianidin and 1.68 ng/g of thiacloprid in the pollen. Oilseed rape 
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Table 2. Summary of studies published since 2013 that document neonicotinoid residues in pollen and nectar collected by free flying bees at sites adjacent 

to treated and untreated flowering crops. Results for samples collected at treated sites are highlighted in bold. SS = spring-sown, WS = winter-sown, US = 

unclear sowing date 

 

 

Species Sample type Samples collected Nest location Mean total neonicotinoid concentration 
(ng/ml or ng/g) 

Reference 

Apis mellifera Nectar 2005-2009 (dates unknown) Adjacent to untreated US OSR fields <1 (limit of quantification) Pilling et al. (2013) 
Apis mellifera Nectar 2005-2009 (dates unknown) Adjacent to treated US OSR fields 0.7-2.4 (range of reported median values) Pilling et al. (2013) 
Apis mellifera Nectar 6th May 2014 Adjacent to untreated WS OSR fields <0.3 (limit of detection) Rolke et al. (2016) 
Apis mellifera Nectar 6th May 2014 Adjacent to treated WS OSR fields 0.68 Rolke et al. (2016) 
Apis mellifera Nectar 10th-14th May 2014 Adjacent to untreated WS OSR fields <0.3 (limit of detection) Rolke et al. (2016) 
Apis mellifera Nectar 10th-14th May 2014 Adjacent to treated WS OSR fields 0.77 Rolke et al. (2016) 
Apis mellifera Nectar June 2013 (peak OSR flowering) Adjacent to untreated SS OSR fields 0.1 Rundlöf et al. (2015) 
Apis mellifera Nectar June 2013 (peak OSR flowering) Adjacent to treated SS OSR fields 10.3 Rundlöf et al. (2015) 
Bombus terrestris Nectar June 2013 (peak OSR flowering) Adjacent to untreated SS OSR fields 0 Rundlöf et al. (2015) 
Bombus terrestris Nectar June 2013 (peak OSR flowering) Adjacent to treated SS OSR fields 5.4 Rundlöf et al. (2015) 
Apis mellifera Pollen 2005-2009 (dates unknown) Adjacent to untreated maize fields <1 (limit of quantification) Pilling et al. (2013) 
Apis mellifera Pollen 2005-2009 (dates unknown) Adjacent to treated maize fields 1-7 (range of reported median values) Pilling et al. (2013) 
Apis mellifera Pollen 2005-2009 (dates unknown) Adjacent to untreated US OSR fields <1 (limit of quantification) Pilling et al. (2013) 
Apis mellifera Pollen 2005-2009 (dates unknown) Adjacent to treated US OSR fields <1-3.5 (range of reported median values) Pilling et al. (2013) 
Apis mellifera Pollen First two weeks of July 2012 Located in untreated SS OSR fields 0.24 Cutler et al. (2014) 
Apis mellifera Pollen First two weeks of July 2012 Located in treated SS OSR fields 0.84 Cutler et al. (2014) 
Apis mellifera Pollen June 2013 (peak OSR flowering) Adjacent to untreated WS OSR fields <0.5 (limit of detection) Rundlöf et al. (2015) 
Apis mellifera Pollen June 2013 (peak OSR flowering) Adjacent to treated WS OSR fields 13.9 Rundlöf et al. (2015) 
Apis mellifera Pollen May to September 2011 Non-agricultural area 0.047 Long and Krupke (2016) 
Apis mellifera Pollen May to September 2011 Adjacent to untreated maize fields 0.078 Long and Krupke (2016) 
Apis mellifera Pollen May to September 2011 Adjacent to treated maize fields 0.176 Long and Krupke (2016) 
Apis mellifera Pollen 6th May 2014 Adjacent to untreated WS OSR fields <0.3 (limit of detection) Rolke et al. (2016) 
Apis mellifera Pollen 6th May 2014 Adjacent to treated WS OSR fields 0.50 Rolke et al. (2016) 
Apis mellifera Pollen 10th-14th May 2014 Adjacent to untreated WS OSR fields <0.3 (limit of detection) Rolke et al. (2016) 
Apis mellifera Pollen 10th-14th May 2014 Adjacent to treated WS OSR fields 0.97 Rolke et al. (2016) 
Bombus terrestris Pollen 10th May 2014 Adjacent to untreated WS OSR fields <0.3 (limit of detection) Rolke et al. (2016) 
Bombus terrestris Pollen 10th May 2014 Adjacent to treated WS OSR fields 0.88 Rolke et al. (2016) 
Bombus impatiens Pollen July to August 2013 Adjacent to untreated maize fields <0.1 (limit of detection) Cutler and Scott-Dupree (2014) 
Bombus impatiens Pollen July to August 2013 Adjacent to treated maize fields 0.4 Cutler and Scott-Dupree (2014) 
Osmia bicornis Pollen 14th May 2014 Adjacent to untreated WS OSR fields <0.3 (limit of detection) Rolke et al. (2016) 
Osmia bicornis Pollen 14th May 2014 Adjacent to treated WS OSR fields 0.88 Rolke et al. (2016) 
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nectar contained similar average concentrations of 3.20 ng/g of thiamethoxam, 2.18 ng/g of 

clothianidin and 0.26 ng/g of thiacloprid. Xu et al. (2016) found average levels of clothianidin in 

oilseed rape of 0.6 ng/g. No pollen samples were taken. In maize pollen, Stewart et al. (2014) found 

average thiamethoxam and clothianidin levels between the limit of detection (LOD) of 1 ng/g to 5.9 

ng/g across a range of seed treatments. Xu et al. (2016) found average clothianidin concentration of 

1.8 ng/g in maize pollen. Additionally, Stewart et al. (2014) found no neonicotinoid residues in 

soybean flowers or cotton nectar.   

Several studies published since 2013 have used free flying bees to experimentally demonstrate that 

proximity to treated flowering crops increases their exposure to neonicotinoids (Table 2). Using 

honeybees, neonicotinoid concentrations in pollen taken from foragers returning to nests placed 

next to untreated flowering crops ranged from 0-0.24 ng/g compared to pollen from nests next to 

treated flowering crops which ranged from 0.84-13.9 ng/g. There have been fewer studies of 

bumblebees and hence the sample size is much smaller, with concentrations of neonicotinoids in 

pollen from untreated areas ranging from <0.1-<0.3 ng/g compared to 0.4-0.88 ng/g for nests placed 

next to treated areas. The only available study looking at solitary bee collected pollen found Osmia 

bicornis collecting <0.3 ng/g in untreated areas and 0.88 ng/g in treated areas. Similar trends are 

found in the nectar results, though fewer studies are available. Rolke et al. (2016) found 

neonicotinoid concentrations of 0.68-0.77 ng/ml in honeybee collected nectar samples from apiaries 

adjacent to neonicotinoid-treated oilseed rape, compared to <0.3 ng/ml from apiaries adjacent to 

untreated oilseed rape. However, Rundlöf et al. (2015) found concentrations of 5.4 ng/ml in 

bumblebee collected nectar and 10.3 ng/ml in honeybee collected nectar taken from bees 

originating from nests placed adjacent to treated oilseed rape compared to 0-0.1 ng/ml from bees 

from nests adjacent to untreated oilseed rape.  

This level of variation of up to one order of magnitude in neonicotinoid concentrations found in bee 

collected pollen and nectar in different studies is substantial. The detected levels in pollen and 

nectar presumably depend significantly on the dose and mode of treatment, the studied crop, the 

season, the location, the soil type, the weather, time of day samples are collected, and so on. Even 

different crop varieties can result in significant variation in the residue content of pollen and nectar 

(Bonmatin et al. 2015). Because pollen samples taken from a series of bees will be from a mixture of 

different plants, most of which will not be crop plants, the neonicotinoid residues in crop pollen will 

be diluted by untreated, non-crop pollen. However, for the reported studies, the higher 

neonicotinoid concentrations are within an order of magnitude of the 6.1 ng/g in pollen and 1.9 

ng/ml in nectar values calculated by Godfray et al. (2014). Additionally, in all cases, the 

concentrations of neonicotinoids in pollen and nectar were higher at sites adjacent to neonicotinoid-

treated flowering crops than at sites adjacent to untreated crops. The available evidence shows that 

proximity to treated flowering crops increases the exposure of bees to neonicotinoid pesticides. The 

recent evidence for concentrations found in flowering crops is approximately in line with the levels 

reported by EFSA (2013a; 2013b; 2013c). 

 

2.1.2 Risk from non-flowering crops and cropping stages prior to flowering 

The EFSA studies state that some of the crops on which clothianidin is authorised as a seed-dressing 

do not flower, are harvested before flowering, or do not produce nectar or pollen, and therefore 

these crops will not pose any risk to bees via this route of exposure. Whilst non-flowering crops are 

clearly not a source of exposure through produced pollen and nectar, they do represent a source of 

neonicotinoids that can dissipate into the wider environment (discussed in Section 2.2). Additionally, 
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treated crops of any type represent additional pathways of neonicotinoid exposure to other 

organisms.  

Depending on crop species and consequent seed size, neonicotinoid-treated seeds contain between 

0.2-1 mg of active ingredient per seed (Goulson 2013). For a granivorous grey partridge weighing 

390 g Goulson calculated that it would need to consume around five maize seeds, six sugar beet 

seeds or 32 oilseed rape seeds to receive a nominal LD50. Based on US Environmental Protection 

Agency estimates that around 1% of sown seed is accessible to foraging vertebrates at 

recommended sowing densities, Goulson calculated that sufficient accessible treated seed would be 

present to deliver a LD50 to ~100 partridges per hectare sown with maize or oilseed rape. Given that 

grey partridges typically consume around 25 g of seed a day there is the clear potential for ingestion 

of neonicotinoids by granivorous animals, specifically birds and mammals. However, whilst some 

experimental studies have been conducted to investigate mortality and sublethal effects of treated 

seeds on birds (see Section 3.5), no studies are available that demonstrate consumption of treated 

seed by farmland birds under field conditions or quantify relative consumption of treated versus 

untreated seed to better understand total exposure via this route.  

In addition to insect herbivores, developing seedlings treated with neonicotinoids are predated by 

molluscan herbivores. Because neonicotinoids have relatively low efficacy against molluscs, Douglas 

et al. (2015) investigated neonicotinoid residues in the slug Deroceras reticulatum, a major 

agricultural pest, using neonicotinoid seed-treated soybean in both laboratory and field studies. 

Total neonicotinoid concentrations from samples of field collected slugs feeding on treated soybean 

were as high as 500 ng/g with average levels over 100 ng/g after 12 days of feeding. No 

neonicotinoids were detected in slugs feeding on untreated control plants. After 169 days, no 

neonicotinoids were detected in either control or treated slugs. In the laboratory, slugs consuming 

soybean seedlings incurred low mortality of between 6-15% depending on the strength of the seed 

treatment. In laboratory experiments, slugs were exposed to the ground beetle Chlaenius tricolor 

after feeding on soybean. C. tricolor is a typical predatory beetle found in agro-ecosystems and is 

known to be an important predator of slugs. For beetles that consumed slugs, 61.5% (n=16/26) of 

those from the neonicotinoid treatment subsequently showed signs of impairment compared to 

none of those in the control treatment (n=0/28). Of the 16 that showed impairment, seven 

subsequently died. This study is also discussed in Section 3.3. A similar result was found by 

Szczepaniec et al. (2011) who found that the application of imidacloprid to elm trees caused an 

outbreak of spider mites Tetranychus schoenei. This increase was as a result of a reduction in the 

density of their predators which incurred increased mortality after ingesting imidacloprid-containing 

prey items. Many beneficial predatory invertebrates feed on pests of crops known to be treated with 

neonicotinoids, but to date no other studies have assessed whether neonicotinoids are transmitted 

to these predators through direct consumption of crop pests in agro-ecosystems.  

Additionally, flowering crops in a non-flowering stage can also pose a potential threat to natural 

enemy populations. The soybean aphid parasitoid wasp Aphelinus certus is an important parasite of 

the soybean aphid Aphis glycines. Frewin et al. (2014) gave A. certus access to laboratory 

populations of aphids feeding on control and neonicotinoid-treated soybean plants. A. certus 

parasitised a significantly smaller proportion of aphids on treated plants than on untreated plants. 

Frewin et al. hypothesise two potential reasons for this effect – firstly that exposure to neonicotinoid 

residues within aphid hosts may have increased mortality of the immature parasitoid or the 

parasitism combined with residues may have increased aphid mortality. Secondly, A. certus may 

avoid parasitising pesticide-poisoned aphids. Aphelinus species are known to use internal cues to 

determine host suitability, and it is possible that they may use stress- or immune-related aphid 
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hormones to judge host suitability. Given that a key part of biological control of insect pests using 

parasitic wasps is to increase the parasitoid abundance early in the season, the reduction in the 

parasitism rate caused by neonicotinoid seed-treatment could potentially impair the ability of A. 

certus to control soybean aphid. 

Non-flowering neonicotinoid crops present possible exposure routes through direct consumption of 

treated seed or consumption of seedling plants that may result in the transmission of neonicotinoids 

to higher trophic levels, including beneficial insects that offer a level of pest control through 

predatory behaviour. As the EFSA reports did not consider the impact of neonicotinoids on non-

bees, no comparison can be made here.  

 

2.1.3 Risk of exposure from the drilling of treated seed and subsequent dust drift 

Numerous studies (12 listed by Godfray et al. 2014) prior to 2013 identified that neonicotinoids 

present in seed dressings can be mechanically abraded during the drilling process and can 

subsequently be emitted as dust. This dust can contain very high levels of neonicotinoids, up to 

240,000 ng/g under certain conditions (see the review by Nuyttens et al. 2013). Acute contact with 

this dust can in certain cases result in the mass poisoning of honeybees (e.g. Pistorius et al. 2009; 

Bortolotti et al. 2009). Concentrations of neonicotinoids in dust created during sowing and the total 

volume released into the air depend on application rate, seed type, seed treatment quality 

(including additions such as talcum powder), seed drilling technology and environmental conditions. 

Girolami et al. (2013) demonstrated that the dust cloud created by seed drills is an ellipsoidal shape 

approximately 20 m in diameter. Using cage experiments, a single pass of a drilling machine was 

sufficient to kill all honeybees present. The use of tubes designed to direct exhaust air towards the 

ground did not substantially increase bee survival rate. Neonicotinoid concentrations of up to 4000 

ng/g were detected in honeybees with an average concentration of 300 ng/g. Similar concentrations 

were detected in bees exposed to both unmodified and modified drills.  

On the basis of the available evidence, the EFSA reports (2013a; 2013b; 2013c) concluded that maize 

produces the highest dust drift deposition, while for sugar beet, oilseed rape and barley seeds the 

dust drift deposition was very limited. No information was available for other crops, and given that 

seed type is an important factor determining neonicotinoid release, extrapolation to other crops is 

highly uncertain. A high acute risk was not excluded for bees foraging or flying in adjacent crops 

during the sowing of maize, oilseed rape, and cereals. In practice, this assessment indicates that 

forager honeybees or other pollinators flying adjacent to the crop are at high risk (e.g. via direct 

contact to dust) and may be able to carry considerable residues back to the hive (for social bees). 

Bees present further away or foraging upwind during the sowing will be considerably less exposed. 

The reports conclude that the aforementioned assessments do not assess potential risk to 

honeybees from sublethal effects of dust exposure. No information on neonicotinoid residues in 

nectar in the adjacent vegetation following dust drift was available. 

In recent years, various types of improved seed drills have been adopted that direct air from the 

drills towards the soil, reducing the dust drift effect by up to 95% (see Manzone et al. 2015). Air 

deflectors have become mandatory for certain products  in the Netherlands, France, Belgium and 

Germany (Godfray et al. 2014). Bonmatin et al. (2015) and Long and Krupke (2015) reviewed existing 

literature on the exposure of pollinators and other non-target organisms to contaminated dust from 

seed drilling machines, predominantly covering pre-April 2013 literature. The authors conclude that 

despite attention by regulators they consider dust drift to be a likely cause of environmental 

neonicotinoid contamination, in particular when best practice is not followed.  
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Recent studies continue to detect neonicotinoids in the tissues of wildflowers surrounding 

agricultural fields immediately after planting. Stewart et al. (2014) detected average neonicotinoid 

concentrations of 9.6 ng/g in whole wildflowers collected from field margins adjacent to fields 

planted with maize (n=18), cotton (n=18) and soybean (n=13). The samples were collected a few 

days after sowing (typically within three days), with the highest concentration of 257 ng/g collected 

adjacent to a maize field sown the previous day with thiamethoxam-treated seed. Detailed data on 

concentrations adjacent to each crop type are not available. No samples were taken from vegetation 

adjacent to crops sown without a neonicotinoid seed dressing. Rundlöf et al. (2015) collected 

flowers and leaves from wild plants growing adjacent to treated and untreated oilseed rape fields 

two days after sowing. Adjacent to the treated fields neonicotinoid concentrations were lower than 

in the previous study at 1.2 ng/g, but this was higher than the control fields where no neonicotinoids 

were detected. This is in line with previous findings that suggest a lower contamination risk from 

dust originating from oilseed rape seeds than for maize seeds.  

 

2.1.4 Risk of exposure from guttation fluid 

Some plants secrete small volumes of liquid (xylem sap) at the tips of leaves or other marginal areas, 

often referred to as guttation droplets. Six published studies and an EFSA review found extremely 

high neonicotinoid concentrations in guttation droplets of up to 4-5 orders of magnitude greater 

than those found in nectar, particularly when plants are young (see Godfray et al. 2014). Using a 

clothianidin concentration of 717,000 ng/g and an acute oral toxicity of 3.8 ng/bee for clothianidin 

(see Section 3.1.1), EFSA (2013a) calculated that a honeybee would only need to consume 0.005 µl 

to receive an LD50. Given that honeybee workers can carry between 1.4-2.7 ml of water a day, there 

is the clear potential for lethal exposure via this route. The risk assessments for thiamethoxam and 

imidacloprid were similar (EFSA 2013b; 2013c). However, on the basis of experimental trials, the 

EFSA reports conclude that whilst guttation droplets were frequently produced, honeybees were 

rarely seen collecting water from them and therefore the risk should be considered low.  

Few studies have looked at neonicotinoid exposure via guttation droplets since 2013. In the one 

available study, Reetz et al. (2015) assessed thiamethoxam concentrations in oilseed rape guttation 

droplets and measured residues in individual honeybee honey-sacs. The authors note that targeted 

observations of water-foraging honeybees in the field are nearly impossible, and so returning 

honeybees from apiaries placed out adjacent to treated oilseed rape crops were instead collected in 

the autumns of 2010 and 2011 when seedling oilseed rape crops were producing guttation droplets. 

Oilseed rape produced guttation droplets containing between 70-130 ng/ml clothianidin at the 

cotyledon stage. Out of 436 honey-sacs, neonicotinoids were only detected in 62 samples at 

concentrations between 0.1-0.95 ng/ml. However, because there was no behavioural observation it 

is not possible to state the providence of this contamination with certainty; neonicotinoids are also 

present in waterbodies and the nectar of wild flowers (see Section 2.2). As such, there is still little 

evidence documenting the extent to which honeybees or other insects collect or are otherwise 

exposed to neonicotinoids through contact with guttation droplets. 

 

 

  

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/098897doi: bioRxiv preprint first posted online Jan. 6, 2017; 

http://dx.doi.org/10.1101/098897
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.2 Risk of exposure for non-target organisms from neonicotinoids persisting in the wider 

environment 

In identifying routes of exposure for honeybees the EFSA reports discussed the possibility of 

neonicotinoid residues in flowering arable weeds growing in fields with treated crops. This route of 

exposure was considered to be negligible as weeds would not be present in the field when the crop 

is sown and considerable uptake via weed plant roots was considered to be unlikely as the substance 

is concentrated around the treated seed. However, the reports note that potential uptake into 

flowering weeds cannot be ruled out for granular neonicotinoid applications, highlighting a data gap 

for this issue.  

The persistence of neonicotinoids in soil, water and in wild plants is of potentially serious concern. If 

these pesticides are able to move into habitats surrounding agricultural fields the range of organisms 

that they could affect is much greater than simply crop-visiting invertebrates. If these pesticides last 

for extended periods in the wider environment then neonicotinoid exposure may be chronic, rather 

than an acute exposure associated with the sowing of treated seeds.  

Since April 2013 much empirical data has been produced documenting the fate of residual 

neonicotinoids in the wider environment after application. Key review publications are Goulson 

(2013), Bonmatin et al. (2015) and Morrissey et al. (2015).  

 

2.2.1 Persistence of neonicotinoids in soil 

Although neonicotinoids applied through a seed dressing are designed to be taken up into the target 

crop plant, only 1.6-20% of the active ingredient is absorbed, with the majority remaining in the soil. 

A small proportion is dispersed through dust created whilst drilling (see Section 2.1.2). 

Neonicotinoids can bind to soil with the strength of the binding dependent on various factors. 

Neonicotinoids are water soluble (see section 2.2.2) and may leach from soils if water is present. 

Leaching is lower and sorption is higher in soils with a high content of organic material (Selim et al. 

2010). In a recent comparison of soil types, Mörtl et al. (2016, Figure 2) found that clothianidin and 

thiamethoxam leached readily from sandy soils. Clay soils showed higher retention of neonicotinoids 

but the greatest retention was seen for loam soils. Correspondingly, the highest residual 

neonicotinoid concentrations were found in loam soils.  
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Figure 2. Elution profiles of clothianidin and thiamethoxam upon absorption on soils. Concentrations 

of clothianidin (black columns) and thiamethoxam (grey columns) measured in aqueous eluates from 

soil columns of (as) sand, (b) clay and (c) loam soils. Eluates from (d) pumice columns are shown as a 

control. Concentrations in 10 mL fractions of the eluate are shown in 𝜇g/mL, as a function of the 

fraction number. Reproduced from Mörtl et al. (2016) 

 

Whilst several studies have assessed dissipation half-life times (DT50) of neonicotinoids in soil, much 

of this work was conducted before the recent interest in the potentially deleterious effect of 

neonicotinoids on wider biodiversity. A review of available DT50 times from field and laboratory 

studies conducted between 1999 and 2013 were reviewed by Goulson (2013). Reported DT50s are 

highly variable and typically range from 200 to in excess of 1000 days for imidacloprid, 7-353 days 

for thiamethoxam and 148-6931 days for clothianidin. DT50s appear to be shorter for the nitro-

substituted neonicotinoids, at 3-74 days for thiacloprid and 31-450 days for acetamiprid. DT50 values 

of over one year would suggest the likelihood of neonicotinoid bioaccumulation in the soil, assuming 

continuous input. However, these reported values are highly variable. At the time the EFSA reports 

were written only one field study was available that assessed neonicotinoid accumulation in the soil 

over multiple years with continued neonicotinoid input. Bonmatin et al. 2005 screened 74 samples 

of farmland soil from France for imidacloprid. Imidacloprid concentrations were higher in soils which 

had been treated in two consecutive years than those soils which had only received one treatment, 

suggesting the possibility of imidacloprid accumulation in the soil. However, as the study only looked 

at soils treated for a maximum of two years it is not clear whether residues would continue to 

increase. Two studies had been completed by 2013 but were not widely disseminated. These studies 

were carried out by Bayer and assessed levels of imidacloprid in soil over six years for seed-treated 
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barley in the UK (Placke 1998a) and spray application to orchard soils in Germany (Placke 1998b). 

Goulson (2013) reviewed this data and argued that the studies show accumulation of neonicotinoids 

in soils over time (Figure 3), with some indication that concentrations may begin to plateau after 

about five years. However, since the trials were terminated after six years it is not clear whether 

levels would have continued to increase.  

 

Figure 3. Levels of imidacloprid detected in soil into which treated winter wheat seeds were sown 

each autumn (1991–1996). Both study sites are in the east of England. Treatment rates were 66 and 

133 g active ingredient ha-1 except in the first year, when it was 56 and 112 g, respectively. Data 

from Placke (1998a). Reproduced from Goulson (2013) 

 

Since 2013 a number of studies have been published which have measured neonicotinoid levels in 

agricultural soils, have calculated DT50s of neonicotinoids in real world soils and have measured 

accumulation in the soil using extensive field trials and field sampling. Data on field-realistic 

neonicotinoid samples are summarised in Table 3. Jones et al. (2014) measured neonicotinoid 

concentrations in centre and edge soil samples from 18 fields across 6 English counties. Samples 

were collected in the spring of 2013, prior to crop planting. Imidacloprid (range <0.09-10.7 ng/g), 

clothianidin (range <0.02-13.6 ng/g) and thiamethoxam (range <0.02-1.5 ng/g) were detected. 

Residues from the centre of the fields were higher than for the edge of the fields (average 

imidacloprid 1.62 against 0.76 ng/g, average clothianidin 4.89 against 0.84 ng/g and average 

thiamethoxam 0.40 against 0.05 ng/g). Neonicotinoids not previously applied in the previous three 

years (predominantly imidacloprid) were detected in 14 of the 18 fields. Limay-Rios et al. (2015) 

analysed soil samples collected in the springs of 2013 and 2014 from 25 agricultural fields in Ontario, 

Canada before crops were sown and found average concentrations of 3.45 ng/g of clothianidin and 

0.91 ng/g thiamethoxam, with total average neonicotinoid concentration of 4.36 ng/g, similar to the 

findings of Jones et al. (2014).  

Botías et al. (2015) analysed soil samples from seven winter-sown oilseed rape and five winter-sown 

wheat fields collected in summer 2013, 10 months after the crops were sown. Samples were 

collected from field centres (oilseed rape only) and field margins (oilseed rape and winter wheat). 
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Imidacloprid (range ≤0.07-7.90 ng/g), clothianidin (range 0.41-28.6 ng/g), thiamethoxam (range 

≤0.04-9.75 ng/g) and thiacloprid (range ≤0.01-0.22 ng/g) were detected. Residues from the centre of 

the oilseed rape fields were higher than for the edge of the oilseed rape fields (average imidacloprid 

3.03 against 1.92 ng/g, average clothianidin 13.28 against 6.57 ng/g, average thiamethoxam 3.46 

against 0.72 ng/g and average thiacloprid 0.04 against ≤0.01 ng/g). Whilst these values are higher 

than those measured by Jones et al. (2014) and Limay-Rios et al. (2015) they are within an order of 

magnitude at their greatest difference.  

Hilton et al. (2015) presented previously private data from 18 industry trials conducted between 

1995 and 1998 for thiamethoxam applied to bare soils, grass and a range of crops (potatoes, peas, 

spring barley, winter barley, soybean, winter wheat and maize). Thiamethoxam DT50s ranged 

between 7.1 and 92.3 days, with a geometric mean of 31.2 days (arithmetic mean 37.2 days). Across 

different application methods and environmental conditions, thiamethoxam declined to <10% of its 

initial concentration within one year. de Perre et al. (2015) measured soil clothianidin 

concentrations over 2011 to 2013, with clothianidin-treated maize sown in the springs of 2011 and 

2013. Maize seeds were sown with seed dressings of 0.25 mg/seed and 0.50 mg/seed (Figure 4). At 

the lower concentration seed dressing, clothianidin residues in the soil ranged from approximately 2 

ng/g before planting to 6 ng/g shortly after planting. At the higher seed dressing, clothianidin 

average residues ranged from 2 ng/g before planting to 11.2 ng/g shortly after planting. For the seed 

treatment of 0.5 mg/seed, de Perre et al. (2015) calculated a DT50 for clothianidin of 164 days. For 

the lower treatment of 0.25 mg/seed a DT50 of 955 days was calculated, though this model explained 

a much lower proportion of the data than the model for the 0.5 mg/seed data. 

 

Table 3. Summary of studies published since 2013 that document neonicotinoid concentrations in 

agricultural soils.  

     Mean neonicotinoid concentration (ng/g)  

Sample 
size (fields) 

Country Year(s) 
studied 

Samples collected Previously 
cropped with 

Imidacloprid Clothianidin Thiamethoxam Reference 

28 USA 2012 Spring, pre-planting Various 4.0 3.4 2.3 Stewart et al. 
(2014) 

18 UK 2013 Spring Various 1.62 4.89 0.4 Jones et al. (2014) 

25 Canada 2013 and 
2014 

Spring, pre-planting Maize 
 

3.45 0.91 Limay-Rios et al. 
(2015) 

7 UK 2013 Summer, with crop 
(10 months post 
planting) 

Oilseed rape 3.03 13.28 3.46 Botías et al. (2015) 

3 USA 2011 to 2013 Continuously Maize and 
soybean 

 
2.0-11.2 

 
de Perre et al. 
(2015) 

50 USA 2012 and 
2013 

Summer, with crop Maize 
 

7.0 
 

Xu et al. (2016) 

27 Canada 2012 to 2014 Summer, with crop Oilseed rape 
 

5.7 
 

Xu et al. (2016) 

35 Germany 2013 Autumn, pre-planting  Various  2.1  Heimbach et al. 
(2016) 
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Figure 4. Mean clothianidin soil concentrations from 2011–2013 for each maize seed-coating rate 

(0.25 mg vs 0.50 mg of clothianidin/seed). Maize planting is presented because it represents the 

introduction of clothianidin in the field, and tillage events are also presented. Asterisks represent 

significantly different concentrations between seed-coating treatments for one sampling event (t 

test, p ≤0.05, n=13 and n=17 for 0.25 mg/seed and 0.50 mg/seed, respectively, from April 2011 to 

March 2013; n=15 for both seed treatment rates since May 2013). Reproduced from de Perre et al. 

(2015). Note – untreated soybeans were sown in 2012 

 

Schaafsma et al. (2016) calculated clothianidin DT50s in maize fields in Ontario, Canada in 2013 and 

2014, including data published in Schaafsma et al. (2015). Soil samples were collected from 18 fields 

in the spring before crop planting. Average neonicotinoid concentrations (clothianidin and 

thiamethoxam aggregated) were 4.0 ng/g in 2013 and 5.6 ng/g in 2014. Using the observed residues 

and the recharge rate applied at planting via treated maize seeds, fields studied in 2013 had an 

estimated DT50 of 0.64 years (234 days) and fields studied in 2014 had an estimated DT50 of 0.57 

years (208 days). For fields studied in both years the DT50 was calculated at 0.41 years (150 days). 

Schaafsma et al. conclude that, at current rates of neonicotinoid application in Canadian maize 

cultivation, soil residues of neonicotinoids will plateau at under 6 ng/g.  

Using the same method, Schaafsma et al. also calculated imidacloprid DT50 using the data from 

Placke (1998a; 1998b; Table 4), producing a very similar DT50 of 0.57 years (208 days). Schaafsma et 

al. argue the Placke studies show neonicotinoid concentrations plateauing after repeated use of 

neonicotinoid seed treatments. However, observed levels were high, so even if plateauing occurred 

after six years the average concentration of neonicotinoids in the soil would be around 30 ng/g 

(Table 4).  
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Table 4. Observed concentrations of imidacloprid and estimated dissipation rates (half-life) in 

orchard soil in Germany and in winter barley fields in the United Kingdom. Data taken from Placke 

(1998a; 1998b). Half-life calculated iteratively by varying the half-life incrementally until the 

predicted and measured values are equal. Reproduced from Schaafsma et al. (2016) 

Field Observed imidacloprid 
concentration (ng/g) 

Half-life (years) 

Barley_66_1 31.4 0.74 
Barley_133_1 49.4 0.63 
Barley_66_2 17.8 0.53 
Barley_133_2 36.3 0.54 
Orchard_1 23.3 0.48 
Orchard_2 34.5 0.59 
Orchard_3 23.1 0.47 
Mean ± Standard Error 30.8 0.57 ± 0.04 

 

Xu et al. (2016) analysed soil samples from 50 maize producing sites in the Midwestern USA across 

2012 and 2013 and soil samples from 27 oilseed rape producing sites in western Canada across 

2012, 2013 and 2014. Samples were collected after planting, but it is not clear exactly how long 

after. Average clothianidin soil concentration at Midwestern maize producing sites with a range of 2-

11 years of planting clothianidin-treated seeds was 7.0 ng/g with a 90th percentile concentration of 

13.5 ng/g. Xu et al. argue that this average is similar to the theoretical soil concentrations (6.3 ng/g) 

expected from a single application of 0.25 mg clothianidin-treated maize seed. Clothianidin levels in 

soil appear to plateau after 4 years (Figure 5a), but the sample size for sites with a history of more 

than four years is much smaller than the number of sites with a history of under four years of use. At 

the oilseed rape producing sites, average clothianidin concentrations were 5.7 ng/g with the 90th 

percentile concentration of 10.2 ng/g. This is also similar to the theoretical soil concentration (6.7 

ng/g) from a single application of oilseed rape seed treated at 4 g clothianidin per kg of seed (Figure 

5b). The oilseed rape sites do not have the same history of clothianidin use but levels appear to be 

fairly stable over the four years of applications. For reference, 10 g clothianidin per kg of oilseed 

rape seed is the most common dosage rate in recent field trials (the Elado seed dressing, Section 

3.1.2.1).  

The current body of evidence shows that detectable levels of neonicotinoids are found in agricultural 

soils over a year after treated seeds were planted, clearly demonstrating a level of neonicotinoid 

persistence greater than the annual agricultural cycle. Moreover, neonicotinoids known not to have 

been recently used can still be present in soils several years after the last application date. The 

available data suggest that, whilst a proportion of the total neonicotinoids applied can and do persist 

in the soil from year to year, there appears to be sufficient degradation that means they do not 

continue to accumulate indefinitely (bioaccumulation) but instead plateau after 2-6 years of 

repeated application. However, these studies also show that overall, the annual sowing of 

neonicotinoid-treated seed results in chronic levels of neonicotinoid soil contamination in the range 

of 3.5-13.3 ng/g for clothianidin and 0.4-4.0 ng/g for thiamethoxam which will act as a constant 

source of exposure for soil dwelling organisms, and for neonicotinoid transport into the wider 

environment.  

 

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/098897doi: bioRxiv preprint first posted online Jan. 6, 2017; 

http://dx.doi.org/10.1101/098897
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 5. (a) Comparison of clothianidin concentrations in soil with years of clothianidin use for 

maize producing sites. Red lines indicate theoretical concentrations from a single application of 

clothianidin-treated seeds for three formulations. (b) Comparison of clothianidin concentrations in 

soil with years of clothianidin use for oilseed rape producing sites. Red lines indicate theoretical 

concentrations from a single application of clothianidin-treated seeds. Reproduced from Xu et al. 

(2016) 
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2.2.2 Persistence of neonicotinoids in water and transport mechanisms for contamination of aquatic 

systems 

Neonicotinoids are soluble in water, a property that is necessary for them to function effectively as 

systemic pesticides which can be taken up by crops. The solubility of neonicotinoids depends on 

local conditions such as ambient temperature, water pH and the form that the neonicotinoids are 

applied in, such as granules, as a seed dressing or as dust drift from seed drilling (Bonmatin et al. 

2015). Under standard conditions (20oC, pH 7), neonicotinoid solubility varies between 184 

(moderate) to 590,000 (high) mg/L for thiacloprid and nitenpyram respectively (PPDB 2012). The 

values for clothianidin, imidacloprid and thiamethoxam are 340 (moderate), 610 (high) and 4,100 

(high) mg/L respectively. In contrast, Fipronil has a solubility 2-3 orders of magnitude lower at 3.78 

mg/L under the same conditions.  

Because of the high solubility of neonicotinoids in water, concerns were raised that neonicotinoids 

might be passing into water bodies in the wider environment and that this may pose a risk for 

aquatic organisms. Available evidence to 2015 was reviewed by Bonmatin et al. 2015 and Morrissey 

et al. 2015. In general, under simulated environmental conditions, neonicotinoids readily leach into 

water (Gupta et al. 2008; Tisler et al. 2009). Neonicotinoids have been identified passing into 

waterways through several different routes. These include direct leaching into ground water and 

subsequent discharge into surface water, decay of treated plant material in waterways and direct 

contact from dust from the drilling of treated seed, treated seeds or spray drift into water bodies 

(Krupke et al. 2012; Nuyttens et al. 2013). The majority of this contamination is thought to occur 

from run-off after acute rainfall (Hladik et al. 2014; Sánchez-Bayo and Hyne 2014; Main et al. 2016). 

Run-off will be particularly severe where soil organic content is low and on steep slopes (Goulson 

2013).  

Whilst rainfall during or shortly after the planting season appears to be the main mechanism for 

neonicotinoid transport into waterbodies, detectable levels of neonicotinoids can be found in prairie 

wetlands in Canada during early spring before the planting season (Main et al. 2014). Main et al. 

(2016) analysed snow, spring meltwater, particulate matter and wetland water from 16 wetland 

sites adjacent to agricultural fields that had been used to grow either oilseed rape (canola, treated 

with neonicotinoids) or oats (not treated). They found that all meltwater samples were 

contaminated with clothianidin and thiamethoxam in the range of 0.014-0.633 µg/L (1 µg/l = 1 ppb). 

Levels of contamination in meltwater were higher adjacent to fields planted with neonicotinoid-

treated oilseed rape in the previous year (mean 0.267 µg/L). However, fields planted with non-

neonicotinoid-treated oats in the previous year still showed similar levels of contamination (mean 

0.181 µg/L). Treated oilseed rape and untreated oats are frequently rotated from year to year (Main 

et al. 2014), and the small difference in neonicotinoid concentration in meltwater from fields 

previously planted with treated and untreated crops suggests the persistence of neonicotinoids in 

the soil over multiple years (see Section 2.2.2). The findings of this study suggest that neonicotinoid 

active ingredients previously bound to soil particles are eroded during spring freeze-thaw cycles. The 

demonstration of this route of transport in addition to general rainfall suggests a more chronic 

transport of neonicotinoids into water bodies outside the main period of crop planting.  

The effect of neonicotinoids on aquatic habitats will depend on their persistence therein. Field and 

laboratory studies investigating the breakdown of imidacloprid, thiamethoxam and clothianidin in 

water report half-lives of minutes to several weeks depending on the conditions, several of which 

are not field-realistic (see Anderson et al. 2015; Lu et al. 2015). There has been no formal review of 

the degradation of neonicotinoids in water and existing literature consists of published peer review 

studies and grey literature government studies, all using different methodologies. However, a 
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number of studies have attempted to measure neonicotinoid degradation under field-realistic 

conditions. Peña et al. (2011) measured degradation of thiamethoxam in wastewaters and sewage in 

Spain finding maximum absorption at 250-255 nm, suggesting high susceptibility to direct photolysis 

from natural light. In control waters thiamethoxam half-life was found to be 18.7 hours (Peña et al. 

2011). Under natural light in rice paddies in Japan, imidacloprid had a half-life of 24.2 hours (Thuyet 

et al. 2011). Under natural light in Switzerland von Gunten et al. (2012) reported a half-life of 2 

hours for imidacloprid and 254 hours for acetamiprid. Under laboratory conditions, Lu et al. (2015) 

measured half-lives for five neonicotinoids under differing conditions to mimic the seasonal change 

found in Canada (Table 5). They found 7-8-fold variation in the rate of neonicotinoid photolysis due 

to the variation in light levels across the season. The results are broadly similar to previously 

published studies with nitro-substituted neonicotinoid half-lives in the region of <1-3 days 

depending on light levels.  

 

Table 5. Estimated photolysis and half-lives (t1/2E) (days) for neonicotinoid pesticides in 

surface water at 50°N latitude for spring, summer, autumn and winter by sunlight on clear days. 

Reproduced from Lu et al. (2015) 

 

Compound Spring Summer Autumn Winter 

Thiamethoxam 0.32 0.20 0.63 1.49 
Clothianidin 0.53 0.35 1.23 3.31 
Imidacloprid 0.36 0.24 0.83 2.22 
Acetamiprid 16.5 9.67 29.7 67.9 
Thiacloprid 14.3 8.75 26.6 60.3 

 

 

In addition to these peer reviewed studies, Lu et al. drew comparison with European Commission 

regulatory studies on neonicotinoid compounds (EC 2004a; EC 2004b; EC 2005; EC 2006). The 

European Commission studies found half-lives in water of 3.3 hours for clothianidin, 2.3-3.1 days for 

thiamethoxam, 34 days for acetamiprid and 80 days for thiacloprid. The exact methodology used in 

these studies is unclear and inconsistent (see Lu et al. 2015 discussion). Nevertheless, the overall 

trend is consistent with the cyano-substituted neonicotinoids (acetamiprid and thiacloprid) taking 1-

2 orders of magnitude longer to degrade than the nitro-substituted neonicotinoids (thiamethoxam, 

clothianidin and imidacloprid). The short half-lives of these three, most widely used neonicotinoids 

suggests that, under field conditions, free neonicotinoids in surface waters should be broken down 

by natural light in a matter of hours or days. However, local environmental conditions can affect this, 

with increasing turbidity increasing neonicotinoid persistence. Moreover, in mesocosm experiments, 

photolysis of thiamethoxam was found to be negligible at depths of greater than 8 cm (Lu et al. 

2015). This significant light attenuation through the water column suggests that neonicotinoids may 

be shielded from photolysis even in shallow waterbodies. In waterbodies such as groundwater that 

are not exposed to light there will be no photolysis. In these circumstances clothianidin is persistent 

and has the potential to accumulate over time (Anderson et al. 2015), though empirical data 

demonstrating this is lacking.  

 

2.2.3 Levels of neonicotinoid contamination found in waterbodies 

The most comprehensive review of levels of neonicotinoid contamination in global surface waters 

was conducted by Morrissey et al. (2015), though see also Anderson et al. (2015). Morrissey 

reviewed reported average and peak levels of neonicotinoid contamination from 29 studies from 9 
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countries between 1998 and 2013. The water bodies studied included streams, rivers, drainage, 

ditches, groundwater, wetlands, ponds, lakes, puddled surface waters and runoff waters. Study 

systems were adjacent to or receiving run-off water from agricultural land. From this dataset (Figure 

6), the geometric mean for average surface water neonicotinoid concentration was 0.13 µg/L (=0.13 

ppb, n=19 studies) and the geometric mean for peak surface water concentration was 0.63 µg/L 

(=0.63 ppb, n=27 studies). Because most monitoring schemes use spot sampling, they are likely to 

underreport the true maximum concentrations that occur immediately after maximum periods of 

neonicotinoid influx (Xing et al. 2013). As peak concentrations are often found after acute events 

such as heavy rainfall, this limits our understanding of the true average and maximum 

concentrations that are found in waterbodies.  

 

 

Figure 6. Shadow histogram of a) average and b) maximum individual neonicotinoid concentrations 

(log scale, μg/L) reported from water monitoring studies. Overlaid is the cumulative distribution 

probability (red ascending line) using all available surface water monitoring data showing proportion 

of data below any given neonicotinoid concentration. Vertical dashed lines illustrate multiple 

ecological quality reference values set for average imidacloprid water concentrations (RIVM 2014: 

0.0083 μg/L, CCME 2007: 0.23 μg/L and US EPA 2014: 1.05 μg/L) or for maximum imidacloprid water 

concentrations (EFSA, 2008: 0.2 μg/L). Reproduced from Morrissey et al. 2015 

 

Since Morrissey et al. (2015) was published, a number of studies have become available 

documenting broadly similar neonicotinoid contamination levels in a wide range of aquatic 

environments. At a small scale in agricultural regions, Schaafsma et al. (2015) measured 

concentrations in surface water (puddles and ditches) in and around 18 maize fields in Ontario, 

Canada. They found arithmetic mean residues of 0.002 µg/L of clothianidin (maximum = 0.043 µg/L) 

and 0.001 µg/L of thiamethoxam (maximum = 0.017 µg/L). In Iowa, USA, Smalling et al. (2015) 

assessed six wetlands surrounded by agricultural land and found arithmetic mean neonicotinoid 

concentrations of 0.007 µg/L (maximum 0.070 µg/L). Away from agricultural land, Benton et al. 

(2016) measured concentrations in mountain streams in the southern Appalachians, USA, where 

eastern hemlock forests are treated with imidacloprid to control pests. Average concentrations of 

0.067 µg/L of imidacloprid (maximum = 0.379 µg/L) were found in seven of the 10 streams 

investigated. de Perre et al. (2015) measured concentrations of clothianidin in groundwater below 

fields of treated maize. Data on average concentrations are not available but concentrations peaked 

at 0.060 µg/L shortly after crop planting.  

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/098897doi: bioRxiv preprint first posted online Jan. 6, 2017; 

http://dx.doi.org/10.1101/098897
http://creativecommons.org/licenses/by-nc-nd/4.0/


At a wider scale, Qi et al. (2015) and Sadaria et al. (2016) measured concentrations in wastewater 

treatment plants. Qi et al. (2015) recorded imidacloprid at concentrations between 0.045-0.100 µg/L 

in influent and 0.045-0.106 µg/L in effluent at five waste water treatment plants in Beijing, China 

with no data available on arithmetic mean concentrations. Sadaria et al. (2016) assessed influent 

and effluent wastewater at 13 conventional waste water treatment plants around the USA. For 

influent, imidacloprid was found at arithmetic mean concentrations of 0.061 µg/L, acetamiprid at 

0.003 µg/L and clothianidin at 0.149 µg/L. For effluent, imidacloprid was found at concentrations of 

0.059 µg/L, acetamiprid at 0.002 µg/L and clothianidin at 0.070 µg/L. 

Two nationwide surveys for neonicotinoids were also published. Hladik and Kolpin (2016) measured 

neonicotinoid concentrations in 38 streams from 24 US states plus Puerto Rico. Five neonicotinoids 

(acetamiprid, clothianidin, dinotefuran, imidacloprid, thiamethoxam) were recorded with at least 

one compound found in 53% of sampled streams, with an arithmetic mean contamination of 0.030 

µg/L and median contamination of 0.031 µg/L. Thiacloprid was not recorded. Székács et al. (2015) 

conducted a nationwide survey of Hungarian watercourses, finding clothianidin at concentrations of 

0.017-0.040 µg/L and thiamethoxam at concentrations of 0.004-0.030 µg/L.  

Across all studies, the highest levels of neonicotinoid contamination were found in agricultural areas. 

In the most comprehensive nationwide survey of streams across the USA conducted between 2012 

and 2014, levels of clothianidin and thiamethoxam contamination (the now dominant agricultural 

neonicotinoids) were significantly positively correlated with the proportion of the surrounding 

landscape used for crop cultivation (Hladik and Kolpin 2016). The most acute levels of neonicotinoid 

contamination in agricultural areas are reported from surface water in the immediate vicinity of 

cultivated crops. Puddles adjacent to fields planted with neonicotinoid-treated maize seeds were 

found to contain maximum concentrations of 55.7 µg/L clothianidin and 63.4 µg/L thiamethoxam in 

Quebec, Canada (Samson-Robert et al. 2014). Surface water in the Netherlands had imidacloprid 

concentrations up to 320 µg/L (van Dijk et al. 2013) and transient wetlands found in intensively 

farmed areas of Texas had thiamethoxam and acetamiprid concentrations of up to 225 µg/L 

(Anderson et al. 2013). In Hungary, the highest neonicotinoid concentrations of 10-41 µg/L were 

found in temporary shallow waterbodies after rain events in early summer (Székács et al. 2015). 

More generally, watercourses draining agricultural fields had high levels of neonicotinoids after 

rainfall in Canada, the USA and Australia (Hladik et al. 2014, Sánchez-Bayo and Hyne 2014). Where 

repeated sampling of the same site has been carried out, the highest neonicotinoid concentrations 

have been found in early summer and are associated with rainfall during the planting season (Main 

et al. 2014; Hladik et al. 2014). Hladik and Kolpin (2016) measured neonicotinoid concentrations in 

three agriculturally affected streams in Maryland and Pennsylvania and found peak levels after rain 

events during the crop planting season in May, though this could not be formally statistically 

analysed due to low sample size (Figure 7).  
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Figure 7. Concentrations of clothianidin, imidacloprid and thiamethoxam and the corresponding 

stream discharge at three sites in the Chesapeake Bay area sampled in 2014. Black bars represent 

samples where no neonicotinoids were detected. Reproduced from Hladik and Kolpin (2016) 

 

In addition to agricultural run-off, urban areas also contribute towards neonicotinoid contamination 

of waterbodies. Whilst the use of imidacloprid as an agricultural pesticide has declined it is still 

found in a wide range of domestic products and veterinary treatments for pets (Goulson et al. 2013). 

Hladik and Kolpin (2016) continuously monitored neonicotinoid levels in Slope Creek, a stream 

surrounded by a largely urban catchment (39% urban) and the Chattahoochee river which includes 

the drainage of Slope Creek and overall has a lower proportion of urbanisation (9%). Imidacloprid 

was the dominant neonicotinoid found, present in 87% of the 67 collected samples (Figure 8). 

Dinotefuran and acetamiprid were less frequently encountered. Unlike in the studied watercourses 

draining agricultural land, no significant relationship was seen with stream flow in either Slope Creek 

or the Chattahoochee river. Hladik and Kolpin suggest that this may be because, unlike for the 

planting period of arable crops, there is no distinct period of use for domestic imidacloprid in an 

urbanised catchment. No clothianidin or thiamethoxam were detected, probably because neither 

catchment contained cultivated crops.   

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/098897doi: bioRxiv preprint first posted online Jan. 6, 2017; 

http://dx.doi.org/10.1101/098897
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure 8. (a) Concentrations of imidacloprid and the corresponding stream discharge from October 

2011 to October 2013 for Sope Creek (a largely urban catchment) and (b) Concentrations of 

imidacloprid, dinotefuran and acetamiprid along with the corresponding stream discharge from 

September 2011 to September 2012 for Chattahoochee River. Black bars represent samples where 

no neonicotinoids were detected. Reproduced from Hladik and Kolpin (2016) 
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2.2.4 Risk of exposure from and uptake of neonicotinoids in non-crop plants 

Since neonicotinoids are water soluble and can persist in soils and waterbodies there is the 

possibility that they may be taken up by any wild plants present nearby. In April 2013 little empirical 

data was available documenting neonicotinoid contamination of wild plants. The EFSA reports 

considered that uptake of neonicotinoids by wild weed plants and subsequent exposure would be 

negligible, as weeds will not be present in the field when the crop is sown and considerable uptake 

via the roots would be unlikely as the substance is concentrated around the treated seed. No 

comment was made on the potential uptake of neonicotinoids by other wild plants in the 

agricultural environments. In the single study available in 2013, Krupke et al. (2012) found that 

dandelions Taraxacum agg. growing near to fields planted with neonicotinoid-treated maize 

contained between 1.1 to 9.4 ng/g clothianidin and <1.0 (LOD) to 2.9 ng/g thiamethoxam. They did 

not assess whether the pesticides were found in the pollen or nectar. It was not clear whether the 

contamination came from neonicotinoid dust settling on the external surface of the plants or if the 

neonicotinoids had been directly taken up through the roots, in which case we would expect them to 

be present inside all plant tissues, pollen and nectar. Since April 2013, a number of studies have 

been published which demonstrate that neonicotinoids are frequently taken up in wild plants 

surrounding agricultural fields (Table 6). 

Botías et al. (2015) collected pollen and nectar from wildflowers growing in field margins adjacent to 

agricultural fields planted with neonicotinoid-treated oilseed rape and wheat. Pollen samples from 

54 wild flower species were collected. Thiamethoxam, imidacloprid and thiacloprid were all 

detected. Thiamethoxam was the most frequently encountered neonicotinoid and levels were highly 

variable with the highest concentrations found in Heracleum sphondylium at 86 ng/g and Papaver 

rhoeas at 64 ng/g. There was substantial variation in the levels of contamination in the same 

wildflower species found in different field margins. Average levels of total neonicotinoid 

contamination in wildflower pollen were significantly higher in margins adjacent to treated oilseed 

rape (c. 15 ng/g) than for margins adjacent to treated wheat (c. 0.3 ng/g). Levels of neonicotinoids 

were much lower in wild plant nectar. Only thiamethoxam was detected at average levels of 0.1 ng/g 

in wild flowers adjacent to oilseed rape fields and <0.1 ng/g adjacent to wheat fields.  

Botías et al. (2015) is the only available study which has specifically measured neonicotinoid 

concentrations in pollen and nectar directly taken from wild plants growing in close proximity to 

neonicotinoid-treated crops. Mogren and Lundgren (2016) assessed neonicotinoid concentrations in 

the nectar of five wild flower species sown as part of pollinator conservation measures which were 

located adjacent to neonicotinoid-treated maize. This was achieved by collecting honeybees seen to 

visit these flowers for nectar and extracting the contents of their crop for neonicotinoid residue 

analysis. Honeybees generally have a very high fidelity to visiting the same flower species on a single 

forage flight so the authors assumed that the nectar was representative of that particular species. 

Average clothianidin concentrations found in this nectar ranged between 0.2 and 1.5 ng/g, with 

significant differences found between wild plant species. Mogren and Lundgren (2016) also tested 

the foliage of seven wildflower species for neonicotinoid residues directly. There was high variability 

in clothianidin uptake between and within plant species (Figure 9). Sunflowers Helianthus annuus 

accumulated the highest levels with concentrations of 0-81 ng/g, with buckwheat Fagopyrum 

esculentum and phacelia Phacelia tanacetifolia accumulating lower levels at 0-52 ng/g and 0-33 ng/g 

respectively. Similarly high levels of variation were found by Botías et al. (2016) who sampled the 

foliage of 45 species of wild plant in field margins adjacent to treated oilseed rape crops. Average 

total neonicotinoid contamination was 10 ng/g, with the highest levels seen in creeping thistle 

Cirsium arvense of 106 ng/g of thiamethoxam. Pecenka and Lundgren (2015) looked specifically at  
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Table 6. Summary of studies published since 2013 that document mean neonicotinoid residues in wild plant tissues, pollen and nectar in plants growing 

close to neonicotinoid-treated agricultural crops. The results of Krupke et al. (2012) are included for reference 

Sample size Vegetation  Samples collected Sample type Mean neonicotinoid concentration (ng/g) Reference 

 adjacent to   Thiamethoxam Clothianidin Imidacloprid Thiacloprid  

43 Oilseed rape May-June 2013 Pollen 14.81  0.56 <0.04 Botías et al. (2015) 
55 Wheat May-June 2013 Pollen 0.14  <0.16 <0.04 Botías et al. (2015) 
24 Oilseed rape May-June 2013 Nectar 0.10    Botías et al. (2015) 
8 Wheat May-June 2013 Nectar <0.10    Botías et al. (2015) 
33 Maize Summer 2014 and 2015 Nectar *  0.2-1.5   Mogren and Lundgren (2016) 
         
40 Maize June 2014 Foliage  0.4   Pecenka and Lundgren (2015) 
50 Maize July 2014 (1 month after 

planting) 
Foliage  0.69   Pecenka and Lundgren (2015) 

100 Oilseed rape May-June 2013 Foliage 8.71 0.51 1.19  Botías et al. (2016) 
375 Maize Summer 2014 and 2015 Foliage  0.5-13.5**   Mogren and Lundgren (2016) 
         
6 Maize Summer 2011 Complete flower 1.15 3.75   Krupke et al. (2012) 
78 Various Summer 2012 Complete flower 7.2 1.4 1.1  Stewart et al. (2014) 
7 Oilseed rape April-May 2013 (2 days after 

sowing) 
Complete flowers 
and foliage 

 1.2   Rundlöf et al. (2015) 

8 Oilseed rape April-June 2013 (2 weeks 
after sowing) 

Complete flowers 
and foliage 

 1.0   Rundlöf et al. (2015) 

* Mogren and Lundgren (2016) sampled honeybees foraging on wild plants and directly extracted nectar from their crop. See main body of text for further discussion 

** Range of concentrations, data on mean concentrations not available 
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clothianidin concentrations in milkweed Asclepias syriaca in field margins adjacent to clothianidin-

treated maize. Levels were lower than the previous two studies, with mean levels of 0.58 ng/g with a 

maximum concentration of 4.02 ng/g.  

Whilst not looking at specific concentrations in pollen, nectar or foliage, Stewart et al. (2014) and 

Rundlöf et al. (2015) found total mean neonicotinoid concentrations of 10 ng/g and 1ng/g 

respectively in whole wild flower samples collected around neonicotinoid-treated fields. As 

discussed in Section 2.1.3, these levels may have been a direct result of neonicotinoid-contaminated 

dust drift onto surrounding vegetation and do not in and of themselves demonstrate uptake of 

neonicotinoids from contaminated soil and/or water.  

 

Figure 9. Concentrations of clothianidin in leaf tissues (mean±SE). Letters above bars show 

significant differences between plant species and numbers represent the number of site-years in 

which a particular species was analysed. Reproduced from Mogren and Lundgren (2016). 

 

Across all studies published since 2013, average levels of neonicotinoids in wild plants range from 

1.0-7.2 ng/g in whole flower samples, 0.4-13.5 ng/g in foliage samples, <0.1-1.5 ng/g in nectar 

samples and <0.04 to 14.8 ng/g in pollen samples. Due to the limited number of studies available, it 

is difficult to make a comparison with levels in directly treated crop plants. However, they are 

broadly comparable to the levels found in the treated crop itself (see Section 2.1.1) 

In 2013 it was known that honeybees collected neonicotinoid contaminated pollen from crop plants, 

but the extent to which this was diluted by uncontaminated pollen from wild plants was unknown. 

Krupke et al. (2012) found levels of clothianidin and thiamethoxam in honeybee-collected pollen 

that ranged between 0 and 88 ng/g, with the proportion of pollen collected from maize (the main 

treated crop in their study area) also varying substantially between 2.6 and 82.7%. There was no 

correlation between the proportion of maize pollen collected and the total neonicotinoid 

concentration. Given the uncertainty over the contamination of wild plants it was not clear what 

long term chronic neonicotinoid exposure was from pollen or nectar over a whole season. A number 
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of studies have attempted to quantify the levels of neonicotinoids in bee-collected pollen and, 

through microscopic identification of the constituent pollen grains, to identify the major source of 

neonicotinoid contamination throughout the season. Most of these studies have used honeybee-

collected pollen as the model, as pollen traps are easy to fit to apiaries that can be moved into 

targeted locations.  

Studies are summarised in Table 7. Most of these studies used honeybees, placing apiaries out next 

to neonicotinoid-treated and untreated crops. As summarised in Section 2.1.1, bees placed near to 

treated crops collected pollen with higher concentrations of neonicotinoids (Cutler et al. 2014; 

Rundlöf et al. 2015; Long and Krupke 2016; Rolke et al. 2016). The highest levels of acute 

contamination are found when a large proportion of crop pollen is collected. Pohorecka et al. (2013) 

found average clothianidin concentrations of 27.0 ng/g in pollen samples (73.7% wildflower pollen) 

collected from apiaries adjacent to treated maize fields. Rundlöf et al. (2015) found average 

clothianidin concentrations of 13.9 ng/g in pollen samples (37.9% wildflower pollen) collected from 

apiaries adjacent to treated oilseed rape fields. Apiaries adjacent to untreated oilseed rape fields 

collected pollen consisting of 47.4% wildflower pollen with no detectable levels of neonicotinoids 

(<0.5 ng/g).  

Where bees collect a greater proportion of wildflower pollen, neonicotinoid concentrations are 

lower. Botías et al. (2015) measured neonicotinoid concentrations in pollen during the peak 

flowering period of oilseed rape and two months after this period. During peak flowering, honeybees 

collected 91.1% of their pollen from wildflowers and 8.9% from oilseed rape, with a total 

neonicotinoid concentration of 3.09 ng/g. In the later period, 100% of their pollen was collected 

from wildflowers, with a total neonicotinoid concentration of 0.20 ng/g. Cutler et al. (2014) also 

sampled honeybee pollen from apiaries adjacent to treated and untreated oilseed rape for a two 

week period in July during peak flowering. Honeybees collected low levels of crop pollen and higher 

levels of neonicotinoid contamination were found adjacent to treated fields (9.0% wildflower pollen 

week 1 to 45.2% week 2, 0.84 ng/g) than untreated fields (15.1% wildflower pollen week 1 to 62.5% 

week 2, 0.24 ng/g). Long and Krupke (2016) collected data over a longer period of time, from May to 

September, covering the flowering period of maize, the flowering crop at their study sites. At all sites 

a high proportion of pollen was collected from wildflowers. Average neonicotinoid concentrations 

were lowest at non-agricultural sites (93.9% wildflower pollen, 0.047 ng/g), higher at untreated 

agricultural sites (95.8% wildflower pollen, 0.078 ng/g) and highest at treated agricultural sites 

(95.3% wildflower pollen, 0.176 ng/g). Alburaki et al. (2015 and 2016) found low levels of 

neonicotinoids when honeybees collected predominantly wildflower pollen, with none detected in 

loads of 99% wildflower pollen and average neonicotinoid concentrations of 0.04 ng/g in loads of 

93.5% wildflower pollen.  

Only two studies are available which measured neonicotinoid concentrations in bumblebee collected 

pollen and quantified the proportion of pollen collected from wildflowers. Cutler and Scott-Dupree 

(2014) placed out Bombus impatiens nests next to neonicotinoid-treated and untreated maize fields.  

Bumblebees collected a very low proportion of their pollen from maize, less than 1%, in contrast to 

honeybees which can collect large quantities of maize pollen during its flowering period (Krupke et 

al. 2012; Pohorecka et al. 2013, though see Alburaki et al. 2015; 2016; Long and Krupke 2016). Levels 

of neonicotinoid residues were low, at <0.1 ng/g by untreated fields and 0.4 ng/g by treated fields. In 

contrast, David et al. (2016) placed out five B. terrestris nests adjacent to treated oilseed rape fields, 

a crop with pollen attractive to bumblebees. Pollen was sampled from nest stores at the end of June. 

Bumblebees collected an average of 68.1% wildflower pollen and 31.9% oilseed rape pollen. 
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Table 7. Summary of studies published since 2013 that document mean neonicotinoid residues in pollen collected by free-flying bees. The results of Krupke 

et al. (2012) and studies described in Section 2.1.1 are included for reference. SS = spring-sown, WS = winter-sown, US = unclear sowing date 

Species Sample 
type 

Samples collected Nest location Proportion of pollen collected 
from wildflowers 

Mean total neonicotinoid 
concentration (ng/g) 

Reference 

Apis mellifera Pollen Summer 2011 Adjacent to treated maize fields 55.5 9.71 Krupke et al. (2012) 
Apis mellifera Pollen July to August 2011 and July 2012 Adjacent to treated maize fields 73.7 27.0 Pohorecka et al. 

(2013) 
Apis mellifera Pollen April to May and June to 

September 2012 
Adjacent to treated fields (various crops, 180 m mean 
distance) 

Data not collected <1.0 (limit of detection) Stewart et al. (2014) 

Apis mellifera Pollen First two weeks of July 2012 Located in untreated SS OSR fields 15.1 (week 1) to 62.5 (week 2) 0.24 Cutler et al. (2014) 
Apis mellifera Pollen First two weeks of July 2012 Located in treated SS OSR fields 9.0 (week 1) to 45.2 (week 2)  0.84 Cutler et al. (2014) 
Apis mellifera Pollen August to early September 2012 Adjacent to treated and untreated maize fields c.99 None detected Alburaki et al. (2015) 
Apis mellifera Pollen June 2013 (peak OSR flowering) Adjacent to treated WS OSR fields 91.1 3.09 Botías et al. (2015) 
Apis mellifera Pollen August 2013 Adjacent to treated WS OSR fields 100.0 0.20 Botías et al. (2015) 
Apis mellifera Pollen June 2013 (peak OSR flowering) Adjacent to untreated SS OSR fields 47.4 <0.5 (limit of detection) Rundlöf et al. (2015) 
Apis mellifera Pollen June 2013 (peak OSR flowering) Adjacent to treated SS OSR fields 37.9 13.9 Rundlöf et al. (2015) 
Apis mellifera Pollen Late July to September 2013 Adjacent to treated and untreated maize fields 93.5 0.04 Alburaki et al. (2016) 
Apis mellifera Pollen May to September 2011 Non-agricultural area 93.9 0.047 Long and Krupke 

(2016) 
Apis mellifera Pollen May to September 2011 Adjacent to untreated maize fields 95.8 0.078 Long and Krupke 

(2016) 
Apis mellifera Pollen May to September 2011 Adjacent to treated maize fields 95.3 0.176 Long and Krupke 

(2016) 
Apis mellifera Pollen 2005-2009 (dates unknown) Adjacent to untreated maize fields Data not collected <1 (limit of quantification) Pilling et al. (2013) 
Apis mellifera Pollen 2005-2009 (dates unknown) Adjacent to treated maize fields Data not collected 1-7 (range of reported 

median values) 
Pilling et al. (2013) 

Apis mellifera Pollen 2005-2009 (dates unknown) Adjacent to untreated US OSR fields Data not collected <1 (limit of quantification) Pilling et al. (2013) 
Apis mellifera Pollen 2005-2009 (dates unknown) Adjacent to treated US OSR fields Data not collected <1-3.5 (range of reported 

median values) 
Pilling et al. (2013) 

Apis mellifera Pollen 6th May 2014 Adjacent to untreated WS OSR fields Data not collected <0.3 (limit of detection) Rolke et al. (2016) 
Apis mellifera Pollen 6th May 2014 Adjacent to treated WS OSR fields Data not collected 0.50 Rolke et al. (2016) 
Apis mellifera Pollen 10th-14th May 2014 Adjacent to untreated WS OSR fields Data not collected <0.3 (limit of detection) Rolke et al. (2016) 
Apis mellifera Pollen 10th-14th May 2014 Adjacent to treated WS OSR fields Data not collected 0.97 Rolke et al. (2016) 
Bombus terrestris Pollen June 2013 (peak OSR flowering) In urban areas (average 1600 m from treated WS OSR) Data not collected 6.5 David et al. (2016) 
Bombus terrestris Pollen June 2013 (peak OSR flowering) In farmland (average 590 m from treated WS OSR) 68.1 21.2 David et al. (2016) 
Bombus impatiens Pollen July-August 2013 Adjacent to untreated maize fields 99.35 <0.1 (limit of detection) Cutler and Scott-

Dupree (2014) 
Bombus impatiens Pollen July-August 2013 Adjacent to treated maize fields 99.35 0.4 Cutler and Scott-

Dupree (2014) 
Bombus terrestris Pollen 10th May 2014 Adjacent to untreated WS OSR fields Data not collected <0.3 (limit of detection) Rolke et al. (2016) 
Bombus terrestris Pollen 10th May 2014 Adjacent to treated WS OSR fields Data not collected 0.88 Rolke et al. (2016) 
Osmia bicornis Pollen 14th May 2014 Adjacent to untreated WS OSR fields Data not collected <0.3 (limit of detection) Rolke et al. (2016) 
Osmia bicornis Pollen 14th May 2014 Adjacent to treated WS OSR fields Data not collected 0.88 Rolke et al. (2016) 
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Thiamethoxam was found in this pollen at an average concentration of 18 ng/g and thiacloprid at an 

average concentration of 2.9 ng/g. These levels are much higher than the levels found in honeybee 

collected pollen from the same study area in the same year of 3.09 ng/g total neonicotinoids, though 

a much higher proportion (91.9%) of pollen was collected from wildflowers (Botías et al. 2015). 

Comparisons are difficult because few other studies have assessed neonicotinoid concentrations in 

bumblebee collected pollen with reference to pollen origin. Rolke et al. (2016) placed B. terrestris 

colonies out next to treated oilseed rape fields and found much lower concentrations of 0.88 ng/g of 

clothianidin in pollen taken directly from returning bumblebees, but the origin of this pollen is 

unknown. The concentrations found by David et al. are however lower than the levels reported by 

Pohorecka et al. (2013) and within a factor of two of the levels reported by Rundlöf et al. (2015) who 

found neonicotinoid concentrations of 27.0 ng/g and 13.9 ng/g in honeybee-collected pollen 

respectively, samples which also contained a high proportion of crop pollen.  

Overall, these studies show that the highest acute exposure (0.84-27.0 ng/g) comes during the 

flowering period of insect-attractive neonicotinoid-treated flowering crops in situations where over 

a quarter of total pollen intake comes from crop plants. Reported values vary by up to two orders of 

magnitude depending on crop type, date of sample collection, initial strength of neonicotinoid seed 

coating and the proportion of wildflower pollen collected. Because only one study has explicitly 

measured neonicotinoid concentrations in wildflower pollen it is difficult to judge whether 

wildflower pollen consistently contains higher or lower concentrations of neonicotinoids than crop 

pollen. However, when looking at honeybee pollen diets in neonicotinoid-treated agricultural areas 

outside of the main flowering period of attractive crops, or where flowering crops are unattractive 

to a specific bee species, neonicotinoid concentrations are generally low, in the region of 0.04-0.40 

ng/g from pollen diets comprised of 95.3-100% wildflower pollen (Cutler and Scott-Dupree 2014; 

Botías et al. 2015; Long and Krupke 2016; Alburaki et al. 2016). Whilst the highest levels of acute 

exposure come from pollen diets containing a proportion of crop pollen, because honeybees collect 

pollen over the whole season, total exposure to neonicotinoids may primarily be determined by 

concentrations in wildflowers. Botías et al. (2015) calculated, based on pollen collected in June and 

August, that 97% of the total neonicotinoids present in pollen were of wildflower origin. Non-crop 

plants surrounding agricultural areas represent an additional and chronic source of neonicotinoid 

exposure.  

 

2.2.5 Risk of exposure from succeeding crops 

The risk of neonicotinoid exposure from succeeding crops was identified as a key knowledge gap by 

the EFSA reports. The available studies suggested that residues in succeeding crops are below LOQ, 

but the data set was limited. Since 2013, few studies have explicitly looked at neonicotinoid levels in 

untreated crops grown in soil that had previously been used to grow neonicotinoid-treated crops, as 

most crops will be sown with a new dose of neonicotinoids each year. However, where specific 

neonicotinoid formulations are changed this analysis is possible. Botías et al. (2015; 2106) analysed 

neonicotinoid concentrations in oilseed rape treated with thiamethoxam. The fields had been used 

to grow clothianidin treated cereals over at least the previous two years. Imidacloprid had not been 

used for the previous three years. Oilseed rape pollen and foliage was found to contain 3.15 ng/g 

and 1.04 ng/g of thiamethoxam, 1.90 ng/g and 2.91 ng/g of clothianidin and 0 ng/g and 0.23 ng/g of 

imidacloprid, respectively. As clothianidin can be produced as a metabolite of thiamethoxam it is not 

possible to comment on the origin of these detected residues. Imidacloprid was absent from the 

pollen samples, reflecting the time since the last known agricultural use. Given that these 

compounds can persist in soil for multiple years, the level of exposure from succeeding crops will 
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broadly depend on the date since the last application, as well as the other factors determining 

neonicotinoid persistence in soil (Section 2.2.1). However, as demonstrated by the presence of 

imidacloprid in foliage samples, succeeding crops can take up residues of neonicotinoids remaining 

from applications made at least two years previously. Given the presence of neonicotinoids in 

annual, perennial and woody vegetation surrounding agricultural land (Section 2.2.4), and the 

medium-term persistence of neonicotinoids in soil and water (Sections 2.2.2 and 2.2.3), the risk of 

exposure from succeeding crops is likely to be in line with levels reported from general vegetation in 

agricultural environments. However, more explicit investigation in this area is required.  

 

 

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/098897doi: bioRxiv preprint first posted online Jan. 6, 2017; 

http://dx.doi.org/10.1101/098897
http://creativecommons.org/licenses/by-nc-nd/4.0/


3. EVIDENCE FOR IMPACT OF NEONICOTINOIDS ON ANIMAL HEALTH 

3.1 Sensitivity of bumblebees and solitary bees to neonicotinoids 

3.1.1 Direct lethality of neonicotinoids to adult wild bees 

Almost all of the studies conducted on the toxicity of neonicotinoids to bees have been conducted 

on honeybees, Apis mellifera. Fourteen studies conducted up to 2010 were reviewed in a meta-

analysis by Cresswell (2011) who concluded that for acute oral toxicity imidacloprid has a 48-h 

LD50=4.5 ng/bee. The EFSA studies (2013a; 2013b; 2013c) reviewed existing studies for acute oral 

toxicity up to 2013, including both peer reviewed studies and also private studies that are not in the 

public domain (summarised in Godfray et al. 2014). These analyses produced LD50s of 3.7 ng/bee for 

imidacloprid, 3.8 ng/bee for clothianidin and 5.0 ng/bee for thiamethoxam. Equivalent LD50s for 

acute contact have also been calculated by EFSA (2013a; 2013b; 2013c) for honeybees to be 81 

ng/bee for imidacloprid, 44 ng/bee for clothianidin and 24 ng/bee for thiamethoxam.  

However, the EFSA reports highlighted a knowledge gap for the effects of neonicotinoids on bees 

other than honeybees. Arena and Sgolastra (2014) conducted a meta-analysis comparing the 

sensitivity of bees to pesticides relative to the sensitivity of honeybees. This analysis combined data 

from 47 studies covering 53 pesticides from six chemical families with a total of 150 case studies 

covering 18 bee species (plus A. mellifera). Arena and Sgolastra calculated a sensitivity ratio R 

between the lethal dose for species a (A. mellifera) and for species s (other than A. mellifera), R = 

LD50a/LD50s. A ratio of over 1 indicates that the other bee species is more sensitive to the selected 

pesticides than A. mellifera and vice versa. There was high variability in relative sensitivity ranging 

from 0.001 to 2085.7, but across all pesticides a median sensitivity of 0.57 was calculated, suggesting 

that A. mellifera was generally more sensitive to pesticides than other bee species. In the vast 

majority of cases (95%) the sensitivity ratio was below 10.  

Combining data for all neonicotinoids (acetamiprid, imidacloprid, thiacloprid and thiamethoxam) 

and for both acute contact and acute oral toxicity, nine studies covering nine bee species (plus A. 

mellifera) were found. These studies showed a median sensitivity ratio of 1.045 which is the highest 

median value of all the analysed pesticide chemical families. The most relatively toxic neonicotinoids 

to other bees were the cyano-substituted neonicotinoids acetamiprid and thiacloprid as these 

exhibit lower toxicity to honeybees than the nitro-substituted neonicotinoids imidacloprid and 

thiamethoxam.  

Selecting pesticides covered by the moratorium (excluding acetamiprid and thiacloprid and including 

fipronil) and including both acute contact and acute oral toxicity, 12 studies covering 10 bee species 

(plus A. mellifera) were found. These studies showed a median sensitivity ratio of 0.957 which is 

close to the calculated sensitivity ratio for all neonicotinoids. The greatest discrepancy between 

honeybees and other bees was found for stingless bees (Apidae: Meliponini). The effect of acute 

contact of fipronil on Scaptotrigona postica (24-fold greater), of acute contact of fipronil on 

Melipona scutellaris (14-fold greater) and of acute contact of Thiacloprid on Nannotrigona 

perilampoides (2086-fold) were the only three cases with a sensitivity ratio of over 10. Stingless bees 

are predominantly equatorial with the greatest diversity found in the neotropics. No species are 

found in Europe (Nieto et al. 2014). In contrast, studies on B. terrestris consistently report a lower 

sensitivity ratio between 0.005 and 0.914, median 0.264. B. terrestris is widespread in Europe and is 

the most commonly used non-Apis model system for assessing the effects of neonicotinoids on wild 

bees (see Section 3.1.2). Differences in bee body weight have been proposed to explain these 

differences, with sensitivity to pesticides inversely correlated with body size (Devilliers et al. 2003). 
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However, this has not been consistently demonstrated and other mechanisms have been suggested 

such as species level adaptation to feeding on alkaloid-rich nectar (Cresswell et al. 2012) and 

differential abilities to clear neonicotinoid residues from their bodies (Cresswell et al. 2014). With 

the limited data available Arena and Sgolastra could not comment on the strength of these claims.  

Spurgeon et al. (2016) calculated various toxicity measures of clothianidin on honeybees, the 

bumblebee species B. terrestris and the solitary bee species O. bicornis. Acute oral toxicity 48-h, 96-h 

and 240-h LD50s for honeybees were 14.6 ng/bee, 15.4 ng/bee and 11.7 ng/bee respectively. For B. 

terrestris, the corresponding values were 26.6 ng/bee, 35 ng/bee and 57.4 ng/bee respectively. For 

O. bicornis, the corresponding values were 8.4 ng/bee, 12.4 ng/bee and 28.0 ng/bee respectively. 

These findings are generally in line with the findings of Arena and Sgolastra, with B. terrestris less 

sensitive than A. mellifera at all time points and O. bicornis less sensitive at 240-h.  

Sgolastra et al. (2016) calculated relative sensitivity to clothianidin to these same three species over 

a range of time periods from 24-96 hours. The highest LD50 values were obtained after 24 hours for 

A. mellifera and B. terrestris and after 72 hours for O. bicornis. At these time points, O. bicornis was 

the most sensitive of the three species, with LD50 measurements of 1.17 ng/bee and 9.47 ng/g, 

compared to 1.68 ng/bee and 19.08 ng/g for A. mellifera and 3.12 ng/bee and 11.90 ng/g for B. 

terrestris. These results are in line with the values calculated by Spurgeon et al. (except for the 240 

hour values), with decreasing sensitivity in the order of O. bicornis > A. mellifera > B. terrestris. 

Together, these studies support the position that small bodied species show greater sensitivity to 

neonicotinoids.  

Around 2000 bee species are known from Europe. The biology, behaviour and ecology of each of 

these species differ from those of honeybees. Consequently, extrapolating from the limited 

toxicological data available for 19 bee species to the effects of neonicotinoids on the wider European 

fauna is fraught with difficulties given the wide variation in relative sensitivity. Current data suggests 

that wild bees are equally to slightly less sensitive to neonicotinoids compared to honeybees when 

considering direct mortality. However, care must be taken when considering individual bee species, 

genera and families, as different taxonomic groups may show consistently different individual level 

sensitivity. Most European wild bees are smaller than honeybees and there is the potential for them 

to be more sensitive on a ng/bee basis. In general, continuing to use honeybee neonicotinoid 

sensitivity metrics is likely to be a reasonable proxy measure for the direct sensitivity of the wild bee 

community to neonicotinoids (Arena and Sgolastra 2014), but further work is needed in this area to 

cover the wide range of bee species present in agricultural environments. 

 

3.1.2 Sublethal effects of neonicotinoids on wild bees 

In 2013 a number of studies looking at sublethal effects of neonicotinoids were available, 

predominantly using honeybees as a model organism in laboratory conditions. Blacquière et al. 

(2012) reviewed studies on neonicotinoid side effects on bees published between 1995 and 2011 

with a specific focus on sublethal effects. The authors found that whilst many laboratory studies 

described lethal and sublethal effects of neonicotinoids on the foraging behaviour and learning and 

memory abilities of bees, no effects were observed in field studies at field-realistic dosages. Two 

major studies that substantially contributed towards the initiation and subsequent implementation 

of the European Union neonicotinoid moratorium were published after this review in 2012.  

Henry et al. (2012) gave honeybee workers an acute dose of 1.34 ng of thiamethoxam in a 20 µl 

sucrose solution, equivalent to 27% of the LD50 (see Section 3.1.1) then released them 1 km away 
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from their nests and measured their return rate. Dosed bees were significantly less likely to return to 

the nest than control bees. Whitehorn et al. (2012) exposed B. terrestris colonies to two levels of 

neonicotinoid-treated pollen (6 and 12 ng/g plus control) and nectar (0.7 and 1.4 ng/g plus control) 

in the laboratory for two weeks before moving them outdoors to forage independently for six 

weeks, aiming to mimic a pulse exposure that would be expected for bees foraging on 

neonicotinoid-treated oilseed rape. Bees in the two neonicotinoid treatments grew significantly 

more slowly and had an 85% reduction in the number of new queens produced when compared to 

control colonies.  

Both of these studies have been criticised for using neonicotinoid concentrations greater than those 

wild bees are likely to be exposed to in the field (see Godfray et al. 2014, Carreck and Ratnieks 

2014). The 1.34 ng of thiamethoxam in a 20 µl sucrose solution used by Henry et al. is a 

concentration of 67 ng/g. Taking maximum estimated concentrations of thiamethoxam in oilseed 

rape nectar of 2.72 ng/g (see Section 2.1.1), a honeybee would have to consume 0.49 g of nectar to 

receive this dose. Honeybees typically carry 25-40 mg of nectar per foraging trip, equivalent to 

0.025-0.040 g, some 10% of the volume necessary to receive a dose as high as the one used by 

Henry et al. Moreover, as honeybee workers regurgitate this nectar at the hive, the total dose 

consumed is likely to be a fraction of the total amount carried. Consequently, it is extremely unlikely 

that the findings of Henry et al. are representative of a real world situation.  

The pollen and nectar concentrations used by Whitehorn et al. are much closer to field-realistic 

levels with the lower treatment within maximum estimated concentrations of imidacloprid in oilseed 

rape pollen and nectar (see Section 2.1.1). However, the experimental set up, where bees had no 

choice but to consume treated pollen and nectar has been criticised as unrealistic, as in the real 

world alternative, uncontaminated forage sources would be available. Studies that have measured 

residues in both crop and wildflower pollen and have assessed the origin of bee-collected pollen (see 

Section 2.2.4) have recorded neonicotinoid concentrations of between 0.84-27.0 ng/g in wild bee-

collected pollen where a substantial proportion of this pollen is collected from crop plants during 

their period of peak flowering. Pollen extracted from bumblebee nests contained neonicotinoid 

concentrations of 6.5 ng/g in urban areas and 21.2 ng/g in rural areas during the peak flowering 

period of oilseed rape, though the number of nests sampled (three and five) were low. However, 

other studies measuring levels in pollen taken directly from bumblebees found concentrations of <1 

ng/g, so there is still a lack of clarity surrounding true levels of neonicotinoid exposure for wild 

bumblebees. On the basis of these described concentrations, the results of Whitehorn et al. are 

likely to be closer to real world conditions than the findings of Henry et al.  

Post-April 2013, much work on sublethal effects of neonicotinoids on bees has been carried out on 

individual honeybees and honeybee colony fitness metrics, such as colony growth, overwintering 

success and the production of sexuals. This work is beyond the scope of this review, but important 

recent publications include Pilling et al. (2013), Cutler et al. (2014a), Rundlöf et al. (2015) and Dively 

et al. (2015) who all found limited to negligible impacts of neonicotinoids at the colony level. See 

also Cresswell (2011) for a meta-analysis of 13 laboratory and semi-field studies conducted before 

2011. Various authors note that interpreting the findings of studies on honeybees to wild bees is 

fraught with difficulty, given the differing size of individual bees and the social behaviour of 

honeybees that gives rise to colonies containing many thousands of workers.  
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3.1.2.1 Impact on colony growth and reproductive success 

Several authors have investigated the effects of neonicotinoids on bumblebees using micro-colonies. 

These are small groups of worker bumblebees that are taken from a queenright colony and isolated 

in a new nest box. These workers, lacking a queen, will begin to rear their own male offspring. As 

such, micro-colonies are useful for generating a large sample size for investigating pesticide impacts 

on bee mortality and larval rearing behaviour and reproductive success.  

Elston et al. (2013) fed micro-colonies of three B. terrestris workers a ‘field-realistic’ dose of 1 ng/g 

thiamethoxam and a ‘field-maximum’ dose of 10 ng/g in both pollen paste and sugar solution for a 

28-day period. Micro-colonies from both thiamethoxam treatments consumed significantly less 

sugar solution than control colonies. There was no impact on worker mortality, but colonies fed 10 

ng/g thiamethoxam had reduced nest-building activity and produced significantly fewer eggs and 

larvae, with the 10 ng/g thiamethoxam treatment the only one to produce no larvae over the 28-day 

experimental period.  

Laycock et al. (2014) fed micro-colonies of four B. terrestris workers thiamethoxam-treated sugar 

solution at a range of concentrations up to 98 ng/g. Pollen was not treated with thiamethoxam. 

Sugar solution consumption was significantly reduced at the 39 and 98 ng/g treatments. Worker 

mortality was only increased at the highest dose of 98 ng/g. Worker oviposition failure was only 

significantly higher at the 39 and 98 ng/g treatments, with no significant differences seen between 

the lower concentration treatments between 0 and 16 ng/g.  

The findings of these two studies are generally in line with pre-2013 knowledge. Mommaerts et al. 

(2010) exposed B. terrestris micro-colonies to sugar solution treated with thiamethoxam 

concentrations of up to 100 ng/g. Whilst the 100 ng/g level reduced brood production, the 10 ng/g 

treatment had no detectable effect. The difference between the findings of Elston et al. and Laycock 

et al. may partially be explained by the fact that Elston et al. treated pollen with thiamethoxam as 

well as sugar solution. Laycock et al. confirm that concentrations of 98 ng/g increase worker 

mortality, but as such concentrations are not usually encountered in the field this is of limited 

relevance.  

Scholer and Krischik (2014) exposed greenhouse queenright colonies of B. impatiens to imidacloprid- 

and clothianidin-treated sugar syrup at concentrations of 0, 10, 20, 50 and 100 ng/g for 11 weeks. 

Queen mortality was significantly increased at six weeks for the 50 and 100 ng/g treatments, and at 

11 weeks for the 20 ng/g treatment for both clothianidin and imidacloprid. Surprisingly, no 

significant impact was found on numbers of workers or new queens produced, though this was in 

part because very low numbers of new queens were produced across all treatments (average of four 

per colony). Colonies in treatments above 10 ng/g imidacloprid and 20 ng/g of clothianidin gained 

significantly less weight over the course of the study. Neonicotinoid concentrations of 20 ng/g and 

above are very high and are unlikely to be consistently encountered by bees for prolonged periods of 

times under real world conditions. As a result, queen mortality in the real world is unlikely to be 

significantly affected by currently observed neonicotinoid concentrations.  

Several field studies have also been published since 2013 that investigate the impact of 

neonicotinoid-treated mass flowering crops on wild bee colony growth and reproductive success. 

Cutler and Scott-Dupree (2014) placed B. impatiens colonies adjacent to maize fields during pollen 

shed in Ontario, Canada. Four neonicotinoid-treated conventional and four untreated organic fields 

were used. Colonies were placed out adjacent to each field on the first day of major pollen shed. 

Colonies were left for 5-6 days and then transported to an area of semi-natural habitat for 30-35 

days, after which they were frozen. Colonies placed next to treated maize produced significantly 
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fewer workers than those placed next to organic farms. All other metrics (colony weight, honey and 

pollen pots, brood cells, worker weight, male and queen numbers and weights) were not 

significantly different. Bumblebees collected less than 1% of their pollen from maize (Section 2.2.4) 

and neonicotinoid residues in collected pollen were low, at 0.4 ng/g from bees foraging adjacent to 

treated fields and below the LOD for bees adjacent to organic fields. Given that it is well known that 

bumblebees collect very low volumes of maize pollen, the relevance of this study is unclear.  

Rundlöf et al. (2015) conducted an extensive field trial of the effects of clothianidin-treated oilseed 

rape on wild bees. Sixteen oilseed rape fields separated by at least 4 km were selected across 

southern Sweden and were paired on the basis of similar landscape composition. In each pair, one of 

the fields was randomly selected to be sown with oilseed rape treated with 10 g clothianidin/kg of 

seed and the other field was sown without a neonicotinoid seed treatment. Twenty-seven cocoons 

of the solitary bee O. bicornis (15 male, 12 female) were placed out alongside each field a week 

before the oilseed rape began to flower, and six colonies of B. terrestris were placed alongside each 

field on the day the oilseed rape began to flower. The O. bicornis placed adjacent to treated oilseed 

rape showed no nesting behaviour and did not initiate brood cell construction. O. bicornis adjacent 

to untreated fields showed nesting behaviour in six of the eight fields studied. The reasons for these 

differences in nest initiation are unclear and it is difficult to draw firm conclusions with a small 

sample size. Bumblebees placed next to treated oilseed rape showed reduced colony growth and 

reproductive output. Bumblebee colonies were collected and frozen when new queens began to 

emerge, with this happening between the 7th of July and 5th of August depending on each colony. 

The number of queen and worker/male cocoons present was counted. At the point of freezing, 

colonies placed next to treated oilseed rape fields had significantly fewer queen and worker/male 

cocoons present.  

Sterk et al. (2016) performed a similar field experiment to Rundlöf et al. Two 65 km2 areas in 

northern Germany were selected in which the only flowering crops comprised winter-sown oilseed 

rape. In one area the oilseed rape was treated with the same seed coating used by Rundlöf et al. of 

10 g clothianidin/kg seed. The other area was an untreated control. In each area, ten B. terrestris 

colonies were placed at each of six localities. Colonies were left adjacent to oilseed rape between 

April and June, covering its main flowering period. After this the colonies were moved to a nature 

reserve. No differences were found in colony weight growth, number of workers produced or 

reproductive output as measured by the production of new queens.  

That these two field studies using the same neonicotinoid seed dressing found markedly different 

results is interesting. The major difference is that whilst Rundlöf et al. used spring-sown oilseed 

rape, Sterk et al. used winter-sown oilseed rape. The length of time between sowing and peak 

flowering is much greater for winter-sown oilseed rape (mid-August to May) than for spring-sown 

oilseed rape (April/May to mid-June). As such, there is more time for neonicotinoids to leach into 

soil and water for winter-sown oilseed rape, reducing the amount of active ingredient available to be 

taken up by the crop. This may explain some of the order of magnitude differences in neonicotinoid 

concentrations in pollen collected from the two crops (Section 2.2.4) and the difference in reported 

colony growth and number of reproductives produced. An additional difference is that in the Sterk et 

al. study, colonies were moved to a nature reserve consisting of forests, lakes and heaths after the 

flowering period of oilseed rape ended. The quality of available forage at this nature reserve is likely 

to have been of both a higher quality and quantity than what was available in a conventional 

agricultural landscape and is not typical of the experience of a bumblebee colony located in such a 

landscape that will have to continue foraging there after crops such as oilseed rape cease flowering. 

In addition, a major problem with the experimental design of Sterk et al. is that only one treated and 
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one control area were used, so there is no true site level replication, as opposed to Rundlöf et al. 

who used eight treated and eight control fields. These differences in experimental design should be 

taken into account when considering why the studies produced such different results.  

One of the studies conducted in response to the results of Henry et al. (2012) and Whitehorn et al. 

(2013) was produced by FERA (2013). It consisted of a field trial with bumblebee colonies placed out 

adjacent to oilseed rape treated with either clothianidin, imidacloprid or an untreated control. 

Colonies were allowed to forage freely for 6-7 weeks whilst the oilseed rape flowered and then were 

moved to a non-agricultural area to continue developing. The initial aim was to measure colony 

growth and development across these three treatments and compare this with neonicotinoid 

concentrations collected from food stores within the nests, but the study was criticised for a number 

of methodological problems such as variable placement date and initial colony size, lack of site level 

replication and contamination of control colonies with neonicotinoid residues during the 

experiment. The study was ultimately not published in a peer reviewed journal but it came to the 

conclusion that there was no clear relationship between bumblebee colony success and 

neonicotinoid concentrations. Goulson (2015) reanalysed the FERA data using linear models and 

retaining two colonies excluded in the original study as outliers, but which do not meet the statistical 

definition of this term. This reanalysis found that the concentration of clothianidin in nectar and the 

concentration of thiamethoxam in pollen significantly negatively predicted both colony weight gain 

and production of new queens.  

Only one study is available that looked at the impact of neonicotinoids on the reproductive success 

of a solitary bee in controlled conditions. Sandrock et al. (2014) established laboratory populations 

of O. bicornis, a solitary stem nesting bee. Bees were fed on sugar solution treated with 2.87 ng/g 

thiamethoxam and 0.45 ng/g clothianidin along with untreated pollen. There was no impact of 

neonicotinoids on adult female longevity or body weight. However, treated bees completed 22% 

fewer nests over the course of the experiment. Nests completed by treated bees contained 43.7% 

fewer total cells and relative offspring mortality was significantly higher, with mortality rates of 15% 

and 8.5% in the treated and untreated groups, respectively. Overall, chronic neonicotinoid exposure 

resulted in a significant reduction in offspring emergence per nest, with treated bees producing 

47.7% fewer offspring. These results suggest that exposure to these low level, field-realistic doses of 

neonicotinoids (<3.5 ng/g) did not increase adult mortality but did have sublethal impacts on their 

ability to successfully build nests and provision offspring.  

Overall, the studies produced since 2013 are generally in line with existing knowledge at this point 

but have advanced our knowledge in several key areas. Laboratory studies have continued to 

demonstrate negative effects of neonicotinoids on bumblebee reproductive output at generally high 

concentrations, with the lowest sublethal effects on reproductive output detected at 10 ng/g. Field 

studies using bumblebees demonstrate that exposure to neonicotinoid-treated flowering crops can 

have significant impacts on colony growth and reproductive output depending on the levels exposed 

to, with crop flowering date relative to sowing and availability of uncontaminated forage plants 

likely to explain variation in the detected residues between the available studies. Our understanding 

of the impact on solitary bees is much improved with the findings of Sandrock et al. (2014) 

suggesting substantial impacts on solitary bee reproductive output at field-realistic concentrations of 

3.5 ng/g. Field studies demonstrating this under real-world conditions are limited with the work of 

Rundlöf et al. (2015) suffering from no nest-building activity at the neonicotinoid treatment sites.  
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3.1.2.2 Impact on foraging efficiency 

In 2013 a limited amount was known about how neonicotinoids affected the foraging behaviour of 

individual bees, and whether this affected colony level fitness. Gill et al. (2012) exposed B. terrestris 

colonies to 10 ng/g imidacloprid in sugar solution in the nest for a period of four weeks. Colonies 

were housed indoors but access tubes allowed them to forage freely outdoors. Imidacloprid exposed 

colonies grew more slowly but there were substantial effects on worker foraging behaviour. 

Compared to controls, imidacloprid treated colonies had more workers initiating foraging trips, 

workers brought back smaller volumes of pollen on each successful trip and successful pollen 

foraging trips were of a significantly longer duration. Treated workers also collected pollen less 

frequently, with 59% of foraging bouts collecting pollen versus 82% for control workers, a decline of 

28%. The authors conclude that exposure to imidacloprid at these concentrations significantly 

reduced the ability of bumblebee workers to collect pollen in the field. The reduced ability to collect 

pollen resulted in imidacloprid treated colonies collecting less pollen than control colonies, 

subsequently resulting in reduced growth through pollen limitation. Since the publication of this 

paper, several new studies assessing neonicotinoid impacts on the foraging behaviour of 

bumblebees have been published.  

Feltham et al. (2014) exposed B. terrestris colonies to sugar solution treated with 0.7 ng/g and pollen 

treated with 6 ng/g of imidacloprid for two weeks. These sugar solution concentrations were an 

order of magnitude lower than the 10 ng/g used by Gill et al. (2012). Colonies were then placed out 

in an urban area in Scotland. The foraging workers from each nest were then monitored for a further 

four weeks. There was no difference in the length of time spent collecting nectar or the volume of 

nectar collected between workers from treated and control colonies. However, treated workers 

collected significantly less pollen, bringing back 31% less pollen per time unit to their colonies. 

Treated workers also collected pollen less frequently, with 41% of foraging bouts collecting pollen 

versus 65% for control workers, a decline of 23%. 

Gill and Raine (2014) performed a similar experiment to Gill et al. (2012) where B. terrestris colonies 

were exposed to sugar solution treated with 10 ng/g of imidacloprid whilst also having access to 

forage freely outside. Colonies and individual worker bumblebees were studied over a four week 

period. In common with their previous findings (Gill et al. 2012), imidacloprid treated workers 

initiated significantly more foraging trips across all four weeks of the experiment. The authors note 

that this is likely driven by an acute individual-level response in the first weeks (neonicotinoids acting 

as a neural partial agonist, increasing desire to forage) and by a chronic colony-level response in the 

latter part of the experiment, with treated colonies allocating a higher proportion of workers to 

pollen collection. Pollen foraging efficiency of treated workers decreased as the experiment 

progressed with the smallest collected pollen loads recorded in week four, suggesting a chronic 

effect of imidacloprid on pollen foraging ability. It is not clear whether this is as a result of individual 

performance deteriorating, or new emerging workers having been exposed for a greater period of 

time.  

Stanley et al. (2015) exposed B. terrestris colonies to 2.4 or 10 ng/g thiamethoxam treated sugar 

solution for 13 days. Colonies were then moved to pollinator exclusion cages where they were 

allowed to forage freely on two varieties of apple blossom. Bees from colonies exposed to 10 ng/g 

spent longer foraging, visited fewer flowers and brought back pollen on a lower proportion of 

foraging trips compared to bees from control colonies. Stanley and Raine (2016) also exposed B. 

terrestris colonies to 10 ng/g thiamethoxam sugar solution for a nine to ten day period. At this point, 

colonies were moved to a flight arena provisioned with two common bird’s-foot trefoil Lotus 

corniculatus and one white clover Trifolium repens plants. Worker bees were individually released 
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and their interaction with the flowers was recorded. Significantly more treated workers displayed 

pollen-foraging behaviour compared to control workers. However, control workers learnt to handle 

flowers efficiently after fewer learning visits.  

Arce et al. (2016) placed B. terrestris nests out in an area of parkland for a five week period whilst 

also supplying them with sugar solution treated with 5 ng/g of clothianidin. The volume of sugar 

solution provided was estimated to be half that which colonies typically consume over the course of 

the experiment. No pollen was provided, so workers had to forage for this and to make up the 

shortfall in nectar resources. In contrast to the previous papers, only subtle changes to patterns of 

foraging activity and pollen collection were detected. There was no clear difference in colony weight 

gain between treatments or number of brood individuals. However, by the end of the experiment, 

treated colonies contained fewer workers, drones and gynes when compared with control colonies.  

Switzer and Combes (2016) studied the impact of acute imidacloprid ingestion on sonicating 

behaviour of B. impatiens. Sonicating is a behaviour whereby a bumblebee lands on a flower and 

vibrates loudly to shake pollen loose from anthers. Bumblebee workers were fed a dose of 0, 0.0515, 

0.515 or 5.15 ng of imidacloprid in 10 µL of sugar solution. These are equivalent to concentrations of 

0, 5.15, 51.5 and 515 ng/g, with the highest volume consumed equivalent to 139% of the honeybee 

LD50, a moderate proxy for bumblebees, as bumblebees are generally less sensitive than honeybees 

(Section 3.1.1). Bees were then allowed to forage from tomato Solanum lysopersicum plants and 

sonicating behaviour was observed. At the lowest dose of 0.0515 ng of imidacloprid, no impact was 

found on wingbeat frequency, sonication frequency or sonication length. No analysis could be made 

for higher doses, as bees in these treatments rarely resumed foraging behaviour after ingesting 

imidacloprid. Given the neonicotinoid concentrations used in this study and sample size problems it 

is difficult to draw many conclusions other than that high levels of exposure impair bumblebee 

pollen foraging behaviour.  

Overall, these studies suggest that exposure to neonicotinoids in nectar at concentrations of 

between 0.7-10 ng/g can have sublethal effects on the ability of bumblebees to collect pollen at 

both the individual and colony level. This shortfall in pollen and subsequent resource stress is a 

plausible mechanism to explain diminished colony growth and production of sexuals in the absence 

of increased direct worker mortality. Given that concentrations as high as 10 ng/g are at, but within, 

the upper limit of what bumblebees are likely to experience in the field (Section 2.1.1 and Section 

2.2.4), it is likely that wild bumblebees exposed to neonicotinoids in contemporary agricultural 

environments suffer from a reduced ability to collect pollen, with a subsequent impact on their 

reproductive output.  

 

3.1.2.3 Impact on bee immune systems 

Bee diseases (including both parasites and pathogens) have been implicated as the major factor 

affecting managed honeybee colony survival in recent years (vanEngelsdorp et al. 2010). Whilst most 

evidence for the negative effects of diseases comes from studies of honeybees, most diseases can 

affect a wide range of bee species. For example, the microsporidian parasite Nosema ceranae 

originates in Asia and has been spread around the world by the trade in honeybees. N. ceranae has 

now been detected in four different genera of wild bees (Bombus, Osmia, Andrena, Heriades) across 

Europe and the Americas (see Goulson et al. 2015). The spread of diseases between wild and 

managed bees can occur at shared flowering plants (Graystock et al. 2015).  
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Sánchez-Bayo et al. (2016) reviewed evidence that linked the use of neonicotinoids to the incidence 

and severity of bee diseases. Prior to 2013, several studies demonstrated a link between 

neonicotinoid exposure and increased susceptibility to diseases in honeybees (Vidau et al. 2011; 

Pettis et al. 2012). Exposure of honeybees infected with N. ceranae to imidacloprid reduced their 

ability to sterilise the brood, increasing the spread of N. ceranae within the colonies (Alaux et al. 

2010). In addition, exposure to sublethal doses of imidacloprid or fipronil increased honeybee 

worker mortality due to a suppression of immunity-related genes (Aufauvre et al. 2014). Di Prisco et 

al. (2013) found that sublethal doses of clothianidin adversely affected honeybee antiviral defences. 

By enhancing the transcription of the gene encoding a protein that inhibits immune signalling 

activation, the neonicotinoid pesticides reduce immune defences and promote the replication of 

deformed wing virus in honeybees bearing covert viral infections. At the field level, a positive 

correlation is found between neonicotinoid treatment and Varroa mite infestation and viral load of 

honeybee colonies (Divley et al. 2015; Alburaki et al. 2015). No studies are available that measure 

the impact of neonicotinoids on the immune systems of wild bees or on the incidence of diseases in 

wild bees in conjunction with neonicotinoid usage. However, given that wild bees share a very 

similar nervous and immune system it is highly likely that neonicotinoids will have similar effects, 

increasing wild bee susceptibility to parasites and pathogens.  

 

3.1.3 Population level effects of neonicotinoids on wild bees 

Nothing was known about the population level effects of neonicotinoids on wild bees in 2013. As a 

managed domesticated species, population trends are available for honeybees, but no such data are 

available for wild bees. One study has attempted to investigate the impact of neonicotinoids on wild 

bee population trends. Woodcock et al. (2016) used an incidence dataset of wild bee presence in 10 

x 10 km grid squares across the United Kingdom. The dataset is comprised of bee sightings by 

amateur and professional entomologists and is probably the most complete national bee 

distribution database currently in existence. Sixty-two wild bee species were selected and their 

geographic distance and persistence over an 18 year period between 1994 and 2011 was calculated. 

Neonicotinoid seed-treated oilseed rape was first used in the UK in 2002, and so the authors 

calculated spatially and temporally explicit information describing the cover of oilseed rape and the 

area of this crop treated with neonicotinoids. The 62 species were split into two groups – species 

that foraged on oilseed rape (n=34) and species that did not (n=28). Species persistence across this 

time period was then compared with expected neonicotinoid exposure. Over the 18 year period, 

wild bee species persistence was significantly negatively correlated with neonicotinoid exposure for 

both the foraging and non-foraging group, with the effect size three times larger for the oilseed rape 

foraging group.  

The characterisation of bees as foragers or non-foragers has one major problem. Many species of 

bees are obligately parasitic on other bees and do not forage for their own pollen. Some parasitic 

bees were included in the oilseed rape forager category (n=2), and some in the non-forager category 

(n=12) based on observed nectar visits from a previous study. Some of the parasitic bees in the non-

forager group are parasitic on bees included in the forager group (n=10/28). Given that these species 

are highly dependent on their host’s abundance this classification does not make ecological sense. A 

decline due to a decline in their host or because of increased direct mortality cannot be separated, 

introducing an additional confounding issue into the analysis. In addition, given the presence of 

neonicotinoids in wild plants adjacent to agricultural areas (Section 2.2.4), the amount applied to 

oilseed rape is not necessarily a true measure of actual neonicotinoid exposure for wild bees.  
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Overall, the study suggests that bee species were more likely to disappear from areas with a high 

exposure to neonicotinoids as measured by the amounts applied as seed dressings to oilseed rape, 

and that this trend was more pronounced for species known to forage on oilseed rape. Whilst more 

work is needed, this is a major correlational study that suggests a link between levels of 

neonicotinoid exposure and bee community persistence at a national scale.   
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3.2 Sensitivity of butterflies and moths to neonicotinoids 

Pisa et al. (2015) reviewed the existing literature on the impact of neonicotinoids on butterflies and 

moths (Lepidoptera). In contrast to bees, very few comparative toxicity tests have been conducted 

for butterflies. Most existing studies have compared butterfly abundance and diversity on organic 

versus conventional farms. Organic farms host a greater diversity of species, but the specific reasons 

for this cannot be isolated. For example, the relative importance of herbicide use that reduces the 

abundance of larval food and adult nectar plants versus direct mortality or sublethal stress from 

pesticides is unknown.  

Most available toxicological studies looking at the sensitivity of Lepidoptera to neonicotinoids and 

fipronil have been conducted on 32 species of moths from nine families that are pests of crops (Pisa 

et al. 2015). There is considerable variation in reported sensitivities between species, with the 

susceptibility to acetamiprid of two cotton pests differing almost 3-fold (LC50=11,049 and 3,798 

ppm). There is also variation between different stages of larval development, with first instar 

caterpillars more than 100 times as sensitive as fifth instar caterpillars with a LC50/LC90 of 0.84/1.83 

and 114.78/462.11 ppm, respectively. Botías et al. (2016) listed LC50 values for three moth species 

that are agricultural crop pests, with 24 h LC50 values between 2400 and 186,000 ppb clothianidin. 

These levels are generally very high and there are multiple examples of neonicotinoid resistance in 

wild populations (see Pisa et al. 2015). Because many of the studied moths species are pests of 

major crops they have been exposed to multiple pesticides over many generations in recent 

decades, and their sensitivity to neonicotinoids many not necessarily be representative of non-pest 

wild Lepidoptera species.  

Since 2013, few studies looking at the sensitivity of wild Lepidoptera to neonicotinoids are available. 

Pecenka and Lundgren (2015) assessed the lethality of clothianidin to caterpillars of monarch 

butterflies Danaus plexippus. First instar caterpillars were fed treated leaves for a 36 hour period. A 

LC50 of 15.63 ng/g was calculated. In addition, sublethal effects on growth were measured at 0.5 

ng/g with first instar larvae taking longer to develop, having reduced body length and lower weight. 

These differences did not extend into the second instar. Yu et al. (2015) fed second instar silkworm 

Bombyx mori caterpillars leaves treated with imidacloprid and thiamethoxam for a 96 hour period. 

They calculated LC50 values of 1270 ng/g for imidacloprid and 2380 ng/g for thiamethoxam. This 

wide range of reported tolerances for a limited number of ecologically different species means that 

thorough assessment of butterfly and moth sensitivity to neonicotinoids is difficult. Much more 

research is required in this area. 

Whilst there is a paucity of toxicological data on wild butterflies and moths, two recent studies have 

used long term butterfly population datasets to assess the relative impact of neonicotinoid usage in 

agricultural areas. Gilburn et al. (2015) used data from the UK butterfly monitoring scheme. The data 

consists of butterfly counts from a wide variety of habitats and the period studied was 1984-2012, a 

more extensive time period that than used for UK wild bees by Woodcock et al. (2016, Section 3.1.3) 

in order to have a ten year period before the introduction of neonicotinoids onto British farmland. 

Seventeen UK butterfly species were selected that are predominantly generalists and are found in a 

wide range of habitats including agricultural habitats. The area of the UK treated with neonicotinoids 

and a range of temperature and weather variables were included in the model, as local climatic 

conditions are a very important factor impacting butterfly populations. In line with expectations, 

summer temperature was significantly positively and spring rainfall significantly negatively 

correlated with the butterfly population indexes. Neonicotinoid usage was also significantly 

negatively associated with butterfly population indices after controlling for the effects of weather. 

The pattern of association varied between butterfly species, but most (14 out of 17) had a negative 
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association. In the most recent time period between 2000-2009 when neonicotinoid usage was at its 

highest, 15 of the 17 studied species showed a negative population trend.  

Forister et al. (2016) conducted a similar analysis on Californian lowland butterfly populations. 

Butterflies have been monitored continuously with biweekly walks at four sites in a region of 

northern California since 1972, 1975 and 1988 depending on the individual site. These sites are 

situated across a land gradient that includes arable, semi-natural and urban habitats. The data were 

used to examine the impact of annual neonicotinoid input and other factors such as summer 

temperature and land-use change.  

 

Figure 10. (a) The number of observed butterfly species at four sites. The response variable (in (a) 

and (c)) is the exponential of Shannon diversity, i.e. the effective number of species; the spline knot 

in (a) is 1997 (95% confidence interval: 1990–2001). (b) Pesticide application for neonicotinoids in 

focal counties (coloured lines), and for the four most commonly applied non-neonicotinoid classes 

(grey lines). The non-neonicotinoids are, in decreasing order of line elevation in 1995; 

organophosphates, carbamates, pyrethroids and organochlorines (lines are county averages). Note 

the different range of years in the first two panels, as (b) starts in the year in which neonicotinoids 

are first reported. (c) Relationship between number of butterfly species and neonicotinoids (values 

of the latter at zero jittered for visualization). (d) Response of individual species to neonicotinoids as 

predicted by wingspan; more negative values on the y-axis indicate species with more negative 

associations with neonicotinoids. Grey polygons in panels (a), (c), and (d ) are 95% confidence 

intervals. Reproduced from Forister et al. 2016 
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A substantial decline in butterfly species richness was seen from 1997 onwards (Figure 10a, 1997 

being the breakpoint identified by the statistical models). Neonicotinoid usage in the region began in 

1995 and has increased since that point (Figure 10b). Neonicotinoid use was significantly negatively 

correlated with butterfly species richness (Figure 10c) and smaller bodied butterflies had the 

strongest negative response to neonicotinoids (Figure 10d).   

Both of these analyses are strictly correlational and neonicotinoid usage may simply be a proxy 

measurement for some other factor that is driving declines. Gilburn et al. note that if habitat 

deterioration and loss of food plants is the main cause of butterfly declines, and agricultural 

intensification is playing a key role in this habitat deterioration, then levels of neonicotinoid usage 

might be acting as a proxy for agricultural intensification and therefore habitat deterioration. Thus, 

neonicotinoid usage could be responsible for driving butterfly declines or alternatively it could 

provide the first useful quantifiable measure of agricultural intensification that strongly correlates 

with butterfly population trends. As most of the UK butterfly monitoring scheme survey areas are 

not directly on agricultural land, Gilburn et al. suspect that it is the transport of neonicotinoids into 

the wider environment (Section 2.2.4) and farmed areas acting as population sinks that is driving the 

declines of butterflies, rather than neonicotinoid use acting as a proxy for agricultural intensification. 

No data is available to assess this hypothesis.  

Overall, recent studies have demonstrated that Lepidoptera show a wide range of tolerances to 

ingested neonicotinoids in their larval stages. No data is available on sensitivity to neonicotinoids 

ingested during the adult stage, for example from crop plant nectar. Two correlational studies using 

long term datasets show a strong association between neonicotinoid use and declines in butterfly 

abundance and species-richness, though more laboratory and field studies are required to establish 

the exact mechanism causing this decline.  
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3.3 Sensitivity of other terrestrial invertebrates to neonicotinoids 

Most available studies that have assessed neonicotinoid sensitivity for insect species have focussed 

on pest species of economically important crops. Pisa et al. (2015) reviewed existing literature on 

the impacts of neonicotinoids on other terrestrial invertebrates and Botías et al. (2016) presented a 

summary on reported LC50s for 24 species of insects across four orders (Hymenoptera, Lepidoptera, 

Hemiptera and Coleoptera) from studies conducted between 1996 and 2015. Pisa et al’s. (2015) 

review found no post-2013 research on the effects of neonicotinoids on Neuroptera, Hemiptera and 

Syrphidae (hoverflies). 

 

3.3.1 Sensitivity of natural enemies of pest insects 

Douglas et al. (2015) investigated the impact of thiamethoxam seed-treated soybean on the 

agricultural pest slug Deroceras reticulatum and one of their natural predators, the carabid beetle 

Chlaenius tricolor, using both laboratory assays and field studies. Slugs collected from the field that 

had been allowed to feed freely on developing soybean seedlings contained total neonicotinoid 

concentration as high as 500 ng/g with average levels over 100 ng/g after 12 days of feeding. In the 

laboratory, slugs consuming soybean seedlings incurred low mortality of between 6-15% depending 

on the strength of the seed treatment. Under laboratory conditions, 61.5% (n=16/26) of C. tricolor 

beetles that consumed slugs from the neonicotinoid treatment subsequently showed signs of 

impairment compared to none of those in the control treatment (n=0/28). Of the 16 that showed 

impairment, seven subsequently died. In the field, seed-treated soybean reduced potential slug 

predator activity-density by 31% and reduced predation by 33%, resulting in increased slug activity-

density by 67%.  

Douglas et al. argue that the introduction of neonicotinoids into soybean results in a trophic 

cascade, whereby the predators of slugs are more significantly affected than the slugs themselves, 

resulting in an increase in the slug population as predation pressure is relaxed. This trophic cascade 

argument may also explain the results of Szczepaniec et al. (2011) who found that the application of 

imidacloprid to elm trees caused an outbreak of spider mites Tetranychus schoenei. This increase 

was as a result of a reduction in the density of their predators which incurred increased mortality 

after ingesting imidacloprid-containing prey items. Many beneficial predatory invertebrates feed on 

pests of crops known to be treated with neonicotinoids, but to date no other studies have assessed 

whether neonicotinoids are transmitted to these predators through direct consumption of crop 

pests in agro-ecosystems.  

Frewin et al. (2014) studied the impact of imidacloprid and thiamethoxam seed-treated soybean on 

the soybean aphid parasitoid wasp Aphelinus certus. Mated females were placed in petri dishes 

containing soybean leaves with soybean aphid Aphis glycines populations for 24 hours. Petri dishes 

were then monitored for eight days with the numbers of alive, dead and juvenile aphids recorded. 

The effects of pesticide treatment was significant on the proportion of aphids parasitised, with no 

difference between the two different neonicotinoid seed treatments (Figure 11). Frewin et al. 

hypothesise two potential reasons for this effect – firstly that exposure to neonicotinoid residues 

within aphid hosts may have increased mortality of the immature parasitoid or the parasitism 

combined with residues may have increased aphid mortality. Secondly, A. certus may avoid 

parasitising pesticide-poisoned aphids. Aphelinus species are known to use internal cues to 

determine host suitability, and it is possible that they may use stress- or immune-related aphid 

hormones to judge host suitability. Given that a key part of biological control of insect pests using 

parasitic wasps is to increase the parasitoid abundance early in the season, the reduction in the 
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parasitism rate caused by neonicotinoid seed-treatment could potentially impair the ability of A. 

certus to control soybean aphid. It is not known if A. certus emerging from contaminated hosts will 

incur lethal or sublethal effects which may further impair this ability.  

 

 

Figure 11. Parasitism rates (±SE) of Aphelinus certus on Aphis glycines feeding on soybean plants 

grown from seed not treated (control) with insecticidal seed treatment compared with those feeding 

on plants grown from seed treated with imidacloprid or thiamethoxam. Bars with the same letter 

are not significantly different (Tukey’s honestly significant difference, α = 0.05), n=35 for each 

treatment. Reproduced from Frewin et al. 2014. 

 

Overall, where predatory species have a greater sensitivity to neonicotinoids than their prey species, 

such as insect predators of non-insect groups like molluscs and arachnids which have differing 

neuroreceptors that renders them less sensitive to neonicotinoids, there is the possibility of 

unintended negative effects on populations of beneficial natural enemies.  

 

3.3.1 Sensitivity of ants to neonicotinoids 

Four studies are available that have looked at the impact of neonicotinoids on ants. Galvanho et al. 

(2013) treated Acromyrmex subterraneus leafcutter ants with imidacloprid to investigate impacts on 

grooming, an important behaviour for limiting the spread of fungal pathogens. Workers were 

treated with 10, 20 or 40 ng/insect imidacloprid. Only workers with a head capsule of 1.6-2.0 mm in 

width were selected. This is a large size relative to most species of ants in the world. At this size, 

individual ants would weigh around 10-20 mg, giving a concentration of 10-40 ng active ingredient 

per 0.015 g of ant, or 666.7-2666.7 ng/g. The lowest dose was sufficient to significantly decrease 
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grooming behaviour. Mortality was not measured, but a previous study found that another species 

of leaf-cutter ant, Atta sexdens, had significantly increased mortality when exposed to a fungal 

pathogen and imidacloprid at the same concentration 10 ng/insect concentration compared to ants 

exposed only to the fungal pathogen (Santos et al. 2007). 

Barbieri et al. (2013) exposed colonies of the Southern ant Monomorium antarcticum (native to New 

Zealand where the study was conducted) and the invasive Argentine ant Linepithema humile to 

imidacloprid in sugar water at a concentration of 1.0 µg/ml, equivalent to 1000 ng/g. Relative 

aggression was affected by neonicotinoid exposure, with native ants lowering their aggression to 

invasive ants, and conversely exposed invasive ants increasing their aggression, resulting in a lower 

survival probability. Brood production was not affected in the Southern ant, but exposure to 

neonicotinoids reduced Argentine ant brood production by 50% relative to non-exposed colonies. 

No effect of neonicotinoid exposure on foraging ability was detected.   

Wang et al. (2015a) fed colonies of fire ants Solenopsis invicta sugar water at concentrations of 0.01, 

0.05, 0.25, 0.50 and 1.00 µg/ml, equivalent to 10-1000 ng/g. The impact on feeding, digging and 

foraging were quantified. Ants exposed to the 10 ng/g concentration consumed significantly more 

sugar water and increased digging activity. Concentrations greater than or equal to 250 ng/g 

significantly supressed sugar water consumption, digging and foraging behaviour.  

Wang et al. (2015b) fed Solenopsis invicta newly mated queens water containing imidacloprid 

concentrations of 10 or 250 ng/g. Neither concentration increased queen mortality but they did both 

significantly reduce queen’s brood tending ability and the length of time taken to respond to light, 

an indication of disturbance and colony threat. In Solenopsis species, eggs are groomed and coated 

with an adhesive substance that maintains moisture levels and allows for rapid transport of egg 

clumps. At the 250 ng/g concentration, the number of egg clumps was significantly increased 

(indicating low egg care and an increase in the effort needed to transport brood), suggesting that the 

queens had a reduced ability to groom eggs. Untended eggs become mouldy, reducing colony 

growth. Colonies exposed to 10 ng/g showed no difference in egg clump numbers compared to 

controls.  

Across these ant studies, the neonicotinoid concentrations used are generally very high, in most 

cases far higher than expected exposure rates under field-realistic conditions (Section 2.1 and 2.2). 

Few sublethal effects were detected at 10 ng/g, the levels that might be reasonably expected to be 

encountered under field conditions. More laboratory and field work is required using lower 

concentrations to better understand the likely effects of neonicotinoids on ants.  

 

3.3.2 Sensitivity of earthworms to neonicotinoids 

Pisa et al. (2015) reviewed existing literature on the impact of neonicotinoids on earthworms. 

Earthworms have similar neural pathways to insects, and earthworms are highly likely to be exposed 

to neonicotinoids through direct contact with soil, ingestion of organic material bound to 

neonicotinoids and consumption of contaminated plant material (Wang et al. 2012, Section 2.2.1) 

Reported neonicotinoid LC50s for earthworms from 13 studies range from 1,500 to 25,500 ppb, with 

a mean of 5,800 ppb and a median of 3,700 ppb (see Pisa et al. 2015). Fewer studies are available 

that measured sublethal effects on reproduction. Negative impacts on cocoon production were 

measured at between 300-7,000 ppb depending on earthworm species and neonicotinoid type.  
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Very little data is available for realistic neonicotinoid exposure to earthworms under field conditions. 

Neonicotinoid concentrations in soils can range from 2-50 ng/g depending on organic matter 

composition, application rate and other factors, although they may be much higher in immediate 

proximity to dressed seeds (Section 2.2.1). Douglas et al. (2015) detected neonicotinoids in 

earthworms present in thiamethoxam-treated soybean fields. Two earthworms were casually 

collected during soil sample collection. The two samples were found to contain total neonicotinoid 

concentrations of 54 and 279 ppb corresponding to ~16 and ~126 ng per worm. In addition to 

thiamethoxam and its degradates, the two earthworm samples contained imidacloprid at 25 and 23 

ppb. The fields from which they were taken had not been treated with imidacloprid for at least one 

year previously, adding further to the evidence that neonicotinoids can persist in soils for over one 

year (Section 2.2.1). Because only live earthworms were collected and the small sample size, it is not 

clear if these are representative of typical concentrations or are an underestimate. For example, if 

earthworms are exposed to higher levels that cause mortality, they cannot be subsequently sampled 

for residue analysis. More work is needed in this area.  

Overall, these studies continue to increase our understanding of the negative effects of 

neonicotinoids on non-target organisms. In contrast to bees, most studied groups had lower 

sensitivity to neonicotinoids, in some cases by several orders of magnitude. The trophic level of the 

study organism may be important, with low trophic level insects better able to detoxify  

neonicotinoids due to their obligately herbivorous lifestyle that results in frequent contact with 

harmful plant metabolites. The most pronounced reported effects have been on predatory insects. 
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3.4 Sensitivity of aquatic invertebrates to neonicotinoids 

The most comprehensive review of the acute and chronic effects of neonicotinoids on aquatic 

invertebrates was conducted by Morrissey et al. (2015). This followed on from and updated the 

reviews of Goulson (2013), Mineau and Palmer (2013) and Vijver and van den Brink (2014). 

Morrissey’s analysis covered 214 toxicity tests for acute and chronic exposure to imidacloprid, 

acetamiprid, clothianidin, dinotefuran, thiacloprid and thiamethoxam for 48 species of aquatic 

invertebrate species from 12 orders (Crustacea: Amphipoda (11.7% of tests), Cladocera (21.0%), 

Decapoda (1.9%), Isopoda (4.2%), Mysida (7.9%), Podocopida (12.6%), Insecta: Diptera (22.9%), 

Ephemeroptera (6.5%), Hemiptera (3.7%), Megaloptera (1.9%), Odonata (1.9%), Trichoptera (3.3%)) 

from peer reviewed and government studies. Both LC50 and ED50 values were included. Acute and 

chronic toxicity of neonicotinoids vary greatly across aquatic invertebrates with differences of six 

orders of magnitude observed (Figure 12). In general, insects were more sensitive than crustaceans, 

in particular the Ephemeroptera (mayflies), Trichoptera (caddisflies) and Diptera (flies, most 

specifically the midges, Chironomidae) were highly sensitive.  

 

 

Figure 12. Range of neonicotinoid toxicity (L[E]C50: 24–96 h in μmol/L, both lethal and sublethal 

values included) among all tested aquatic invertebrate orders. For context, three of the most 

common test species (white bars) for the orders Cladocera (Daphnia magna), Amphipoda 

(Gammarus pulex) and Diptera (Chironomus dilutus) are shown to illustrate differences in sensitivity 

by species. Vertical lines within bars represent geometric means of test values. Concentrations are 

given as molar equivalents μmol/L to standardise for the variable molecular weights of the different 

neonicotinoids. Back conversions to concentrations in μg/L (ppb) can be obtained by multiplying the 

molar concentration by the molar weight of the neonicotinoid compound. Reproduced from 

Morrissey et al. 2015 

 

The Cladoceran water flea D. magna was the most commonly used model organism, represented in 

34 of the 214 toxicity tests (16%). Its widespread use is because of its position as a global industry 

standard for the majority (82%) of commercial chemicals tested (Sánchez-Bayo 2006). It shows a 

wide variation in sensitivity to neonicotinoids but the mean short term L[E]C50 is at least two to three 
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orders of magnitude greater than for all other tested invertebrate groups (Figure 12). This has been 

highlighted by several authors (e.g. Beketov and Liess 2008) who argue that given the low sensitivity 

of D. magna to neonicotinoids, a different model organism such as a Dipteran should be selected 

when conducting tests on this class of pesticide. This is illustrated by the most recent study to 

calculate LC50s for a range of aquatic invertebrates that was not included in Morrissey’s review. de 

Perre et al. (2015) found no sublethal or lethal effects of clothianidin on D. magna at concentrations 

of over 500 µg/L. In contrast, C. dilutus showed EC50 effects at 1.85 µg/L and LC50 effects at 2.32 µg/L, 

in line with previous findings (Figure 12).  

Kunce et al. (2015) also investigated the impacts of neonicotinoids on the similar C. riparius. First 

instar midge larvae were exposed to thiacloprid and imidacloprid at 50% of the 96-h LC50s reported 

in the literature, corresponding to 2.3 µg/L for thiacloprid and 2.7 µg/L for imidacloprid. Three day 

old larvae were pulse exposed to these concentrations for 1 hour then transferred to clean water 

and allowed to develop normally. The one hour exposure to thiacloprid significantly decreased the 

proportion of larvae surviving to adulthood from 94% in the control to 68%. However, imidacloprid 

alone and thiacloprid and imidacloprid combined had no observable effect. No difference on adult 

egg production levels was detected.  

These recent studies in conjunction with the review of Morrissey et al. strongly support the position 

that insect larvae are most sensitive to neonicotinoids in aquatic environments. Morrissey et al. 

conclude that chronic neonicotinoid concentrations of over 0.035 µg/L or acute concentrations of 

over 0.200 µg/L can affect the most sensitive aquatic invertebrate species. This finding is consistent 

with the value suggested by Vijver and van der Brink (2014) of 0.013-0.067 µg/L for imidacloprid. A 

number of water quality reference values have been published by governmental regulatory bodies 

and independent researchers in Europe and North America (Table 8). Most of these studies are 

based on assessments for imidacloprid only. Values for acceptable long term concentrations vary by 

three orders of magnitude from 0.0083 µg/L in the Netherlands (RIVM 2014; Smit et al. 2014) to 1.05 

µg/L in the USA. There is considerable difference in the methodologies used to calculate these 

reference values, with the US EPA value likely to have been strongly based on results from D. magna, 

a species known to have relatively low sensitivity to neonicotinoids (Morrissey et al. 2015).  

Current levels of neonicotinoids in aquatic habitats regularly exceed this threshold. Morrissey et al. 

reviewed 29 studies from nine countries and found geometric mean surface water concentrations of 

0.130 µg/L (73.6%, 14/19 studies over 0.035 µg/L threshold) with geometric mean peak surface 

water concentration of 0.630 µg/L (81.4% 22/27 studies over 0.200 µg/L). Studies published since 

2015 that are not included in Morrissey’s review have also reported average neonicotinoid levels 

exceeding this threshold (see Section 2.2.2). Qi et al. (2015) and Sadaria et al. (2016) found levels of 

neonicotinoids above the threshold in influent and effluent wastewater at processing plants in the 

China and the USA. Benton et al. (2015) found average and peak imidacloprid levels above the 

thresholds in Appalachian streams in the USA. In contrast, low average levels of neonicotinoids were 

found in standing water and ditches on arable land in Ontario, Canada (Schaafsma et al. 2015) and in 

Iowan wetlands in the USA (Smalling et al. 2015). de Perre et al. (2015) found peak concentrations of 

0.060 µg/L of clothianidin in groundwater below maize fields shortly after crop planting. In a 

nationwide study, Hladik and Kolpin (2016) found arithmetic mean neonicotinoid concentrations in 

streams across the USA to be just below the chronic threshold at 0.030 µg/L. However, peak 

concentration was 0.425 µg/L. Székács et al. (2015) also conducted a nationwide survey of 

Hungarian watercourses, finding clothianidin at concentrations of 0.017-0.040 µg/L and 

thiamethoxam at concentrations of 0.004-0.030 µg/L. The highest concentrations, of 10-41 µg/L, 

were only found in temporary shallow waterbodies after rain events in early summer.  
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Table 8. Summary of published ecological quality reference values for neonicotinoids (imidacloprid 

except this review) in freshwater environments against which average (chronic or long-term) or 

maximum (acute or peak) exposure concentrations are to be compared. Reference values are placed 

in descending order. Reproduced from Morrissey et al. (2015) 

Source Average 
concentration 
(µg/L) 

Maximum 
concentration 
(µg/L) 

Justification 

EPA (2014) USA 1.05 35.0 Aquatic life benchmark – methodology uncertain 
CCME (2007) 
Canada 

0.23  EC15 for the most sensitive of two freshwater species tested with assessment 
factor of 10 applied 

EFSA (2008) 
European Union 

 0.2 No Observable Effect Concentration (NOEC) (0.6 μg/L) from a 21 d German 
microcosm study to which an assessment factor of 1–3 has been applied based 
on expert deliberations 

RIVM (2008) 
Netherlands 

0.067  Maximum permissible concentration (MPC) for long term exposure derived 
from the lowest NOEC value for chronic toxicity studies with assessment factor 
of 10 applied 

Morrissey et al. 
(2015) 

0.035 0.2 Lower confidence interval of HC5 from SSDs generated using 137 acute (LC50) 
and 36 chronic (L[E]C50) toxicity tests considering all neonicotinoid compounds 
weighted and standardized to imidacloprid and all available test species 

RIVM (2014) 
Netherlands 
(see Smit et al. 
2014)  

0.0083  Updated MPC for long-term exposure derived from chronic studies using 
species sensitivity distribution (SSD) approach and Hazard Concentration (HC5) 
applied to NOEC/LC10/EC10 values with assessment factor of 3 applied 

Mineau and 
Palmer (2013) 

0.0086 or 0.029  The higher of two empirically-determined acute–chronic ratios applied to the 
most sensitive of 8 aquatic species tested to date; or HC5 from SSD applied 
using NOECs from chronic studies of 7 single species and 1 species assemblage 

 

Combining these recent studies with those included in Morrissey’s 2015 review a total of 65.3% of 

studies (17/26) report average neonicotinoid concentrations of over the 0.035 µg/L chronic 

threshold and 73.5% of studies (25/34) report peak concentrations over the 0.200 µg/L acute 

threshold. The number of countries that have been studied and their widespread distribution 

(Australia, Brazil, Canada, China, Hungary, Japan, the Netherlands, Sweden, Switzerland, the United 

States and Vietnam) indicates the widespread contamination of watercourses of all kinds with levels 

of neonicotinoids known to be harmful to sensitive aquatic invertebrates. This is now a chronic 

global problem, likely to be impacting significantly on aquatic insect abundance and on food 

availability for their predators, including fish, birds and amphibians.   
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3.5 Sensitivity of birds and bats to neonicotinoids 

Gibbons et al. (2015) reviewed the direct and indirect effects of neonicotinoids and fipronil on 

vertebrate wildlife including mammals, fish, birds, amphibians and reptiles. LD50 values for 

imidacloprid, clothianidin and fipronil are available for 11 species of bird (Table 9). There is 

considerable variation in the lethality of these compounds to birds, both between bird species and 

pesticide type. Using US EPA (2012) classifications for toxicity (see legend for Table 9), imidacloprid 

ranged from moderately toxic to highly toxic, clothianidin from practically non-toxic to moderately 

toxic and fipronil from practically non-toxic to highly toxic.  

 

Table 9. Single (acute) dose LD50 for bird species (mg/kg, equivalent to ppm) for imidacloprid, 

clothianidin and fipronil. Toxicity classification follows US EPA (2012): PNT practically non-toxic, ST 

slightly toxic, MT moderately toxic, HT highly toxic, VHT very highly toxic. For birds: PNT >2,000, ST 

501–2,000, MT 51–500, HT 10–50, VHT <10. Reproduced from Gibbons et al. (2015) 

Species Pesticide LD50 Reference 

Mallard, Anas platyrhynchos Imidacloprid 283 (MT) Fossen (2006) 
Grey partridge, Perdix perdix Imidacloprid 13.9 (HT) Anon (2012) 
Northern bobwhite quail, Colinus virginianus Imidacloprid 152 (MT) SERA (2005) 
Japanese quail, Coturnix japonica Imidacloprid 31 (HT) SERA (2005) 
Feral pigeon, Columba livia Imidacloprid 25-50 (HT) SERA (2005) 
House sparrow, Passer domesticus Imidacloprid 41 (HT) SERA (2005) 
Canary, Serinus canaria Imidacloprid 25-50 (HT) SERA (2005) 
Mallard, Anas platyrhynchos Clothianidin >752 (ST) European Commission (2005) 
Northern bobwhite quail, Colinus virginianus Clothianidin >2,000 (PNT) Mineau and Palmer (2013) 
Japanese quail, Coturnix japonica Clothianidin 423 (MT) Mineau and Palmer (2013) 
Mallard, Anas platyrhynchos Fipronil 2,150 (PNT) Tingle et al. (2003) 
Ring-necked pheasant, Phasianus colchicus Fipronil 31 (HT) Tingle et al. (2003) 
Red-legged partridge, Alectoris rufa Fipronil 34 (HT) Tingle et al. (2003) 
Northern bobwhite quail, Colinus virginianus Fipronil 11.3 (HT) Tingle et al. (2003) 
Feral pigeon, Columba livia Fipronil >2,000 (PNT) Tingle et al. (2003) 
Field sparrow, Spizella pusilla Fipronil 1,120 (ST) Tingle et al. (2003) 
Zebra finch, Taeniopygia guttata Fipronil 310 (MT) Kitulagodage et al. (2008) 

 

Many of these studied species are granivorous and can be expected to feed on sown seeds shortly 

after the sowing period. Depending on crop species and consequent seed size, neonicotinoid-treated 

seeds can contain between 0.2-1 mg of active ingredient per seed. Goulson (2013) calculated that a 

granivorous grey partridge weighing 390 g would need to consume around five maize seeds, six 

sugar beet seeds or 32 oilseed rape seeds to receive a nominal LD50. Based on US Environmental 

Protection Agency estimates that around 1% of sown seed is accessible to foraging vertebrates at 

recommended sowing densities, Goulson calculated that sufficient accessible treated seed would be 

present to deliver a LD50 to ~100 partridges per hectare sown with maize or oilseed rape. Given that 

grey partridges typically consume around 25 g of seed a day there is the clear potential for ingestion 

of neonicotinoids by granivorous birds. However, no studies are available that demonstrate 

consumption of treated seed by farmland birds under field conditions or quantify relative 

consumption of treated versus untreated seed. More work is needed in this area to better 

understand total neonicotinoid exposure via this route.  

In addition to lethal effects, several studies have identified sublethal effects of neonicotinoid 

ingestion on birds (Table 10). House sparrows can become uncoordinated and unable to fly, and 
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studies of Japanese quail and red-legged partridges have reported DNA breakages and a reduced 

immune response, respectively. Many of these sublethal effects occur at lower concentrations than 

the lethal dose. A single oral dose of 41 mg/kg of imidacloprid will cause mortality in house 

sparrows, a substantially lower dose (6 mg/kg) can induce uncoordinated behaviour and an inability 

to fly (Cox 2001). While imidacloprid is highly toxic to Japanese quail, with an LD50 of 31 mg/kg, 

chronic daily doses of only 1 mg/kg/day can lead to testicular anomalies, DNA damage in males, and 

reductions in embryo size when those males are mated with control females (Tokumoto et al. 2013).  

 

Table 10. Other studies of the direct effects of imidacloprid, clothianidin and fipronil on birds. 

Exposure could either be acute or chronic, the latter shown as /day (per day). All studies 

demonstrated deleterious effects at the given dosage, except those marked NE (no effect). 

Reproduced from Gibbons et al. (2015) 

Species Effect on: Imidacloprid Clothianidin Fipronil Source and detailed effect 

Mallard, Anas 
platyrhynchos 

Reproduction 16 mg/kg/day >35 mg/kg/day 
(NE) 

 Adapted from figures in Mineau and Palmer 
(2013); various effects on reproduction 

Chicken, Gallus gallus 
domesticus 

Growth and 
development 

  37.5 mg/kg Kitulagodage et al. (2011a); reduced feeding 
and body mass, and developmental 
abnormalities of chicks 

Chicken, Gallus gallus 
domesticus 

Neurobehavioural   37.5 mg/kg Kitulagodage et al. (2011a); behavioural 
abnormalities of chicks 

Red-legged partridge, 
Alectoris rufa 

Survival 31.9-53.4 
mg/kg/day 

  Lopez-Antia et al. (2013); reduced chick 
survival at low dose, and reduced adult 
survival at high dose 

Red-legged partridge, 
Alectoris rufa 

Reproduction 31.9 
mg/kg/day 

  Lopez-Antia et al. (2013); reduced 
fertilisation rate and chick survival 

Red-legged partridge, 
Alectoris rufa 

Immunotoxic 53.4 
mg/kg/day 

  Lopez-Antia et al. (2013); reduced immune 
response 

Northern bobwhite 
quail, Colinus 
virginianus 

Reproduction  >52 mg/kg/day  Adapted from figures in Mineau and Palmer 
(2013); various effects on reproduction 

Northern bobwhite 
quail, Colinus 
virginianus 

Growth and 
development 

24 
mg/kg/daya 

 11 mg/kgb aAdapted from figures in Mineau and Palmer 
(2013); various effects on weight 
bKitulagodage et al. (2011b); birds stopped 
feeding so lost weight 

Japanese quail, Coturnix 
japonica 

Reproduction 1 mg/kg/day   Tokumoto et al. (2013); testicular 
anomalies; reductions in embryo length 
when those males mated with un-dosed 
females 

Japanese quail, Coturnix 
japonica 

Genotoxic 1 mg/kg/day   Tokumoto et al. (2013); increased breakage 
of DNA in males 

House sparrow, Passer 
domesticus 

Neurobehavioural 6 mg/kg   Cox (2001); in-coordination, inability to fly 

Zebra finch, Taeniopygia 
guttata 

Reproduction   >1 mg/kg Kitulagodage et al. (2011a); reduced 
hatching success 

 

In addition to the studies reviewed by Gibbons et al., one additional study is available that assessed 

the impact of neonicotinoid ingestion on birds. Lopez-Anita et al. (2015) fed red-legged partridge 

Alectoris rufa imidacloprid-treated wheat seeds for a period of 25 days in the autumn and an 

additional period of 10 days in the spring, matching the pattern of cereal cropping in Spain. One 

treatment contained seeds treated at the recommended dosage rate and the second at 20% of the 

recommended rate, to mimic a diet comprised 20% of treated seeds. Treated seeds contained 

concentrations of imidacloprid of 0.14-0.7 mg/g at the two dose rates. As the 400 g partridges used 

in this study consume around 25 g of seeds a day, a daily ingestion of 8.8 and 44 mg/kg/day was 

expected, above the LD50 for Japanese quail (Table 9, SERA 2005).  
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Imidacloprid at the highest dose killed all adult partridges in 21 days, with first deaths occurring on 

day three. Mortality in the low dose and control groups was significantly lower at 18.7% and 15.6% 

respectively. As all partridges in the high dose died, effects on reproductive output were only 

measured in the low dose treatment. Compared to controls, low dose females laid significantly 

smaller clutches, and the time to first egg laying was also significantly increased. There was no 

difference in egg size, shell thickness, fertile egg rate and hatching rate. There was no detectable 

impact on chick survival, chick growth or sex ratio between these two groups. These results are in 

line with previous findings for lethal (Table 9) and sublethal (Table 10) effects of neonicotinoid 

consumption by birds. Whilst LD50s vary across two orders of magnitude from 11.3->2,000 mg/kg, 

sublethal effects are seen across a more consistent range of doses over one order of magnitude 

between 1-53 mg/kg. The greatest outstanding issue is that no data exist that quantify the actual 

exposure rate to granivorous birds from neonicotinoid-treated seeds. As such, it is difficult to judge 

whether these clearly demonstrated lethal and sublethal effects are manifested in wild bird 

populations in the field.  

In addition to sublethal and lethal effects potentially caused by the ingestion of neonicotinoids from 

treated seeds, bird populations may also be affected by a reduction in invertebrate prey. Hallmann 

et al. (2014) used bird population data from the Dutch Common Breeding Bird Monitoring Scheme, a 

standardised recording scheme that has been running in the Netherlands since 1984. Surface water 

quality measurements are also regularly collected across the Netherlands, including data on 

imidacloprid levels. Hallmann et al. compared surface water imidacloprid levels between 2003-2009 

with bird population trends for 15 farmland bird species that are insectivorous at least during the 

breeding season to assess the hypothesis that neonicotinoids may cause bird population declines 

through a reduction in invertebrate food availability. The average intrinsic rate of increase in local 

farmland bird populations was significantly negatively affected by the concentration of imidacloprid. 

At the individual level, 14 of the 15 bird species showed a negative response to imidacloprid 

concentrations, with 6 out of 15 showing a significant negative response. As previously discussed in 

Section 3.2, it is difficult to disentangle the effects of neonicotinoids from the effects of general 

agricultural intensification. Hallmann et al. attempt to control for proxy measures of intensification 

including changes in land use area, areas of cropped land and fertiliser input, but imidacloprid levels 

remained a significant negative predictor.  

The only available study that has quantified changes in invertebrate prey availability after 

neonicotinoid treatment and concurrent changes in the bird community was conducted in the USA. 

Falcone and DeWald (2010) measured invertebrates in eastern hemlock Tsuga canadensis forests in 

Tennessee after trees has been treated with imidacloprid to control hemlock woolly adelgid Adelges 

tsugae. The imidacloprid treatment had a significantly negative effect on non-target Hemiptera and 

larval Lepidoptera. However, there was no corresponding decline in insectivorous bird density 

between treatments. Direct comparison between this study and the findings of Hallmann et al. 2014 

are difficult due to the very different ecological conditions. It is likely sufficient untreated areas 

existed in hemlock forests for insectivorous birds to find sufficient forage. In the Netherlands, one of 

the most agriculturally intensified regions in the world, unaffected semi-natural habitat is scarce and 

a reduction in prey availability caused by neonicotinoid application would have a more severe 

impact.  

No studies are available that measure the effect of neonicotinoids on bats and bat populations. A 

link between neonicotinoid use and declining farmland butterfly populations has been suggested 

(Gilburn et al. 2015; Forister et al. 2016) and given the ecological similarity between butterflies and 

moths a similar trend may be ongoing, though this has not yet been investigated. Many bat species 
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feed on moths, so a reduction in the moth population is likely to impact bat populations through a 

reduction in food availability. Mason et al. (2014) link neonicotinoid use with an increase in the 

frequency of bat diseases such as White Nose Syndrome (caused by the fungus Geomyces 

destructans) in both the US and Europe. They hypothesise that consumption of neonicotinoid 

residues in insect prey weakens the immune system of bats. However, no evidence is presented 

demonstrating the presence of neonicotinoid residues in moths or bats, passage across these trophic 

levels or that exposure to neonicotinoids weaken the immune system of bats, resulting in increased 

rates of fungal infection. The position of Mason et al. must currently be considered unsupported.  
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3.6 Synergistic effects of additional pesticides with neonicotinoids 

The EFSA (2013a; 2013b; 2013c) risk assessments for clothianidin, imidacloprid and thiamethoxam 

considered these pesticides and their impacts on honeybees individually. In the field, multiple 

neonicotinoids, other insecticides and other pesticides such as herbicides and fungicides are 

commonly applied to a single crop. Bees are frequently exposed to complex mixtures of pesticides,  

with 19 detected in trap caught bees from an agricultural region of Colorado (Hladik et al. 2016). It is 

possible that combinations of neonicotinoids and other pesticides may have antagonistic (become 

less effective), additive (equivalent to adding together existing effectiveness) or synergistic 

(multiplicative) effects. Morrissey et al. (2015) briefly listed known examples of synergistic effects 

between neonicotinoids and other pesticides. Several examples have been demonstrated by 

pesticide companies themselves. For example, Bayer demonstrated that the combination of 

clothianidin and the fungicide trifloxystrobin resulted in a 150-fold increase in kill rate to Phaedon 

leaf beetle larvae over clothianidin alone (Wachendorff-Neumann et al. 2012). Bayer scientists also 

demonstrated that treatments of 8,000 ppb of thiacloprid and 8,000 ppb of clothianidin resulted in 

aphid population kill rates of 25% and 0% after 6 days. Combining the two increased the kill rate to 

98% (Andersch et al. 2010). Specifically for honeybees, Iwasa et al. (2004) demonstrated that the 

combination of thiacloprid with the fungicide propiconazole increased the toxicity of the mixture 

several hundred fold. Whilst synergies have been demonstrated, few environmental risk 

assessments have been made for neonicotinoids in combination with other pesticides.  

Since 2013, a number of studies have investigated possible synergistic effects in neonicotinoids. 

Several have focussed on the interaction between neonicotinoids and ergosterol biosynthesis 

inhibitor (EBI) fungicides (which include propiconazole) and their impact on bees. Biddinger et al. 

(2013) studied the interaction between the contact toxicity of acetamiprid, imidacloprid and the 

fungicide fenbuconazole, a substance virtually non-toxic to bees (except at extremely high 

concentrations), using A. mellifera and Japanese orchard bees Osmia cornifrons. These pesticides are 

commonly found together in formulated products used in orchards. The doses ranged from 1.38-60 

µg/bee 1:1 acetamiprid plus fenbuconazole mixture and 0.86-983 µg/bee 2:1 imidacloprid plus 

fenbuconazole mixture. At the LD50, the acetamiprid and fenbuconazole mixture was ~5 times more 

toxic than acetamiprid alone for A. mellifera and ~2 times more toxic than acetamiprid for O. 

cornifrons. However, these doses are exceptionally high, for example the 0.86 µg/bee 

imidacloprid:fenbuconazole mixture is equivalent to 567.6 ng/bee, with the A. mellifera contact 

toxicity to imidacloprid LD50 calculated as 81 ng/bee (Section 3.1). Unsurprisingly, this dose killed 

85% of honeybee in this treatment. At unrealistically high concentrations it is not clear how 

informative these results are.  

Thompson et al. (2014) investigated synergies between several EBI fungicides (flusilazole, 

propiconazole, myclobutanil and tebuconazole) and a range of neonicotinoids (clothianidin, 

thiacloprid, imidacloprid and thiamethoxam) on A. mellifera. Individual pesticides and mixtures of 

one neonicotinoid and one fungicide were administered through both contact and ingestion at a 

range of concentrations sufficient to increase mortality and bees were observed for a 96 hour 

period. LD50s were calculated after 48 hours as mortality did not significantly increase after this 

point. Single neonicotinoid and fungicide doses showed similar toxicity to previous published results, 

with no individual fungicide causing toxic effects even at concentrations of 22.4 µg/bee.  

For neonicotinoid/fungicide mixtures, neonicotinoids were applied at calculated LD50s, in the region 

of 0.035-0.124 µg/bee for clothianidin, imidacloprid and thiamethoxam and 122.4 µg/bee for 

thiacloprid (cyano-substituted neonicotinoids having lower toxicity to bees, Section 3.1.1). 

Fungicides were applied at doses of between 0.161 and 0.447 µg/bee depending on the particular 
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compound. These values of were calculated as realistic worst-case exposures based on approved 

application rates for UK crops. For these mixtures, a synergy ratio was calculated where the LD50 of 

the neonicotinoid was divided by the LD50 of the neonicotinoid plus fungicide mixture. Consequently, 

a value of over one indicates the mixture was more toxic and a value under one indicates the 

mixture was less toxic. Combinations of fungicides with thiacloprid and clothianidin showed 

negligible synergy for contact toxicity, with an average synergism ratio of 0.30 and 1.07 respectively. 

Imidacloprid and thiamethoxam were higher at 1.53 and 2.02. For oral toxicity, thiacloprid and 

imidacloprid showed low synergy at 0.60 and 0.48 whereas clothianidin and thiamethoxam were 

higher at 1.52 and 1.31 respectively. Only two combinations showed significant synergy, for a 

contact dose of tebuconazole and thiamethoxam with a synergy of 2.59 and for an oral dose of 

clothianidin and tebuconazole at a synergy of 1.90.  

Sgolastra et al. (2016) investigated the interaction between clothianidin and the fungicide 

propiconazole in three bee species, A. mellifera, B. terrestris and O. bicornis. Each species was 

administered a LD10 dose of clothianidin (0.86, 1.87 and 0.66 ng/bee respectively, see Section 3.1.1 

for more detail), a non-lethal dose of propiconazole (7 µg/bee) and a combination of the two 

treatments. Bees were then observed for a 96 hour period and mortality quantified. Some 

synergistic effects were seen. In A. mellifera, mortality was significantly higher for the combined 

dose in the first two time periods (4 and 24 hours). Mortality in B. terrestris for the combined dose 

was only significantly higher in the first time period, after 4 hours. However, in O. bicornis, exposure 

to the combination of clothianidin and propiconazole resulted in significantly higher mortality at all 

time points (Figure 13).  

Figure 13. Cumulative proportion of surviving Osmia bicornis females exposed to a control solution 

(CS – sugar water solution with 3% acetone), clothianidin (CLO – 0.63 ng/bee) propiconazole (PRO – 

7 µg/bee), and clothianidin plus propiconazole (CLO+PRO – 0.63 ng/bee plus 7 µg/bee). Statistically 
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significant synergistic effects at the various assessment times (4, 24, 48, 72, 96 h) are marked with 

an asterisk 

Spurgeon et al. (2016) conducted similar experiments to Sgolastra et al., investigating the effect of a 

combination of clothianidin and propiconazole on A. mellifera, B. terrestris and O. bicornis. In order 

to calculate an LD50, clothianidin concentrations were varied and propiconazole concentrations were 

held at zero, a low dose and a high dose. The low dose was taken from the EFSA Panel on Plant 

Protection Products (2012) reported environmental concentrations, and the high dose was 10 times 

the low dose to represent a plausible worst case scenario, but it is not clear what these values 

actually are. Mortality was quantified over 48, 96 and 240 hours.  For A. mellifera, clothianidin LC50s 

with and without propiconazole were always within a factor of 2, with no clear negative trend at 

higher propiconazole concentrations. For B. terrestris, clothianidin LC50s with propiconazole were 

between 1.5 to 2 fold lower. For O. bicornis, clothianidin LC50s with propiconazole was up to 2 fold 

lower with a negative trend as propiconazole concentrations increased. Spurgeon et al. concluded 

that the clothianidin and propiconazole combination had no to slight synergy for A. mellifera and 

slight to moderate synergy for B. terrestris and O. bicornis.  

In an additional trial, Thompson et al. (2014) demonstrated that the dose of fungicide applied is a 

key factor determining neonicotinoid toxicity using propiconazole and thiamethoxam mixtures 

(Table 11). The authors argue that their low rates of significant synergies  between neonicotinoids 

and fungicides was because of their lower, more field-realistic fungicide doses of 0.161-0.447 µg/bee 

compared to 10 µg/bee used by Iwasa et al. (2004), an early study demonstrating this interaction. 

The values of 0.161-0.447 µg/bee were calculated as realistic worst-case exposures based on 

approved application rates for UK crops. However, data are lacking demonstrating true field-realistic 

exposure rates to fungicides for free flying bees. Whilst studies such as Sgolastra et al. (2016) show a 

clear synergistic effect between fungicides and neonicotinoids on O. bicornis, the dose of fungicide 

used is more than an order of magnitude greater than that used by Thompson et al. Bees are 

consistently exposed to fungicides with 40 types found in honeybee pollen, wax and nectar 

(Sánchez-Bayo and Goka 2014). Pollen collected by bumblebees and stored in their nests has also 

been found to contain fungicides at average concentrations between 0.15-25 ppb (EBI fungicides 

0.15-17 ppb, David et al. 2016). However, almost nothing is known about how concentrations 

present in bee-collected material translate into acute or chronic exposure to bees. It is currently not 

possible to comment on what fungicide doses represent a realistic situation that bees are likely to 

encounter in the wild. 

 

Table 11. Comparison of the ratio of propiconazole to the doses of thiamethoxam and the resultant 

LD50 in the contact and oral studies. Synergy ratios marked with an * were significantly different. 

Reproduced from Thompson et al. (2014). 

Contact dose 
propiconazole 
µg/bee 

Ratio fungicide: 
thiamethoxam 
contact LD50 

Contact LD50 
thiamethoxam 
µg/bee 

Synergy 
ratio 

Ratio fungicide: 
thiamethoxam 
oral LD50 

Oral LD50 
thiamethoxam 
µg/bee 

Synergy 
ratio 

0 - 0.0373 - - 0.0641 - 
0.0224 0.6 0.0288 1.3 0.349 0.0268 2.4 
0.224 6 0.0247 1.5 3.49 0.0277 2.3 
2.24 60 0.0134 2.8* 34.9 0.0265 2.4 
22.4 600 0.0104 3.6* 349 0.00776 8.3* 
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In addition to work on bees, Kunce et al. (2015) investigated the impact of one hour pulse exposure 

of imidacloprid and thiamethoxam and two pyrethroids, deltamethrin and esfenvalerate in single, 

pairwise and combined doses on the development of the aquatic midge C. riparius (see Section 3.4 

for more methodological and concentration details). Most pesticide treatments reduced the survival 

of the larvae, but the deleterious effects did not appear to be synergistically amplified by a 

combination of pesticides. Kunce et al. conclude that at the low doses and period of exposure used, 

the risk of synergistic or additive effects is very low. Much more work on the potential synergistic 

effects of pesticides in aquatic ecosystems is required.  

Overall, these studies support the position that neonicotinoids can act synergistically with 

fungicides, increasing their lethality to bees. However, the dose rate of both neonicotinoids and 

fungicides, time of exposure, neonicotinoid and fungicide chemical class and length of time after 

exposure are all important explanatory factors affecting this relationship. The concentration of 

fungicide used in laboratory studies appears to be the most important factor determining synergistic 

lethality. Fungicides are regularly sprayed during the period when flowering crops are in bloom 

under the assumption that these compounds are safe for bees. Further work is needed in this area 

to establish realistic levels of fungicide exposure for free flying bees in order to assess the likely 

impact of neonicotinoid/fungicide synergies on bee populations.  

Studies to date have only examined pairwise interactions between pesticides. It is clear that bees 

and other non-target organisms inhabiting farmland are routinely exposed to far more complex 

cocktails of pesticides than any experimental protocol has yet attempted to examine. For example, 

honeybee and bumblebee food stores commonly contain 10 or more pesticides (e.g. David et al. 

2016). A major challenge for scientists and regulators is to attempt to understand how chronic 

exposure to complex mixtures of neonicotinoids and other chemicals affects wildlife. 
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4. CONCLUDING REMARKS 

4.1 Advances in scientific understanding and comparison with the 2013 knowledge base 

The EFSA reports into clothianidin, imidacloprid and thiamethoxam are naturally narrow in scope, 

focusing specifically on the risks that these neonicotinoids pose to bees, with almost all data 

consisting of and referring to the honeybee Apis mellifera. Because the scope of this review is much 

wider, focusing on neonicotinoid persistence in the wider environment and possible impacts on 

many non-target organisms, a simple comparison with the EFSA reports is not possible as there is no 

well-defined baseline of existing knowledge prior to 2013 for most topic areas. However, it is 

possible to comment on the change in the scientific evidence since 2013 compared to the EFSA 

reports. This process is not meant to be a formal assessment of the risk posed by neonicotinoids in 

the manner of that conducted by EFSA. Instead it aims to summarise how the new evidence has 

changed our understanding of the likely risks to bees; is it lower, similar or greater than the risk 

perceived in 2013. With reference to the EFSA risk assessments baseline, advances in each 

considered area and their impact on the original assessment can be briefly summarised thus: 

 Risk of exposure from pollen and nectar of treated flowering crops. The EFSA reports 

calculated typical exposure from flowering crops treated with neonicotinoids as seed 

dressings. Considerably more data are now available in this area, with new studies broadly 

supporting the calculated exposure values. For bees, flowering crops pose a Risk Unchanged 

to that reported by EFSA 2013. 

 Risk from non-flowering crops and cropping stages prior to flowering. Non-flowering crops 

were considered to pose no risk to bees. No new studies have demonstrated that these non-

flowering crops pose a direct risk to bees. They remain a Risk Unchanged. 

 Risk of exposure from the drilling of treated seed and subsequent dust drift. Despite 

modification in seed drilling technology, available studies suggest that dust drift continues to 

occur, and that dust drift still represents a source of acute exposure and so is best 

considered a Risk Unchanged. 

 Risk of exposure from guttation fluid. Based on available evidence this was considered a low-

risk exposure path by EFSA 2013. New data have not changed this position and so it remains 

a Risk Unchanged. 

 Risk of exposure from and uptake of neonicotinoids in non-crop plants. Uptake of 

neonicotinoids by non-target plants was considered likely to be negligible, though a data gap 

was identified. Many studies have since been published demonstrating extensive uptake of 

neonicotinoids and their presence in the pollen, nectar and foliage of wild plants, and this 

source of exposure may be much more prolonged than the flowering period of the crop. 

Bees collecting pollen from neonicotinoid-treated crops can generally be expected to be 

exposed to the highest neonicotinoid concentrations, but non-trivial quantities of 

neonicotinoids are also present in pollen and nectar collected from wild plants. Exposure 

from non-target plants clearly represents a Greater Risk. 

 Risk of exposure from succeeding crops. A data gap was identified for this issue. Few studies 

have explicitly investigated this, but this area does represent some level of risk as 

neonicotinoids and now known to have the potential to persist for years in the soil, and can 

be detected in crops multiple years after the last known application. However, as few data 

exist this is currently considered a Risk Unchanged. 

 Direct lethality of neonicotinoids to adult bees. Additional studies on toxicity to honeybees 

have supported the values calculated by EFSA. More data have been produced on 

neonicotinoid toxicity for wild bee species and meta-analyses suggest a broadly similar 
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response. Reference to individual species is important but neonicotinoid lethality should be 

broadly considered a Risk Unchanged. 

 Sublethal effects of neonicotinoids on wild bees. Consideration of sublethal effects by EFSA 

was limited as there is no agreed testing methodology for the assessment of such effects. A 

data gap was identified. Exposure to neonicotinoid-treated flowering crops has been shown 

to have significant negative effects on free flying wild bees under field conditions and some 

laboratory studies continue to demonstrate negative effects on bee foraging ability and 

fitness using field-realistic neonicotinoid concentrations. Greater Risk. 

Within this context, research produced since 2013 suggest that neonicotinoids pose a similar to 

greater risk to wild and managed bees, compared to the state of play in 2013. Given that the initial 

2013 risk assessment was sufficient to impose a moratorium on the use of neonicotinoids on 

flowering crops, and given that new evidence either confirms or enhances evidence of risk to bees, it 

is logical to conclude that the current scientific evidence supports the extension of the moratorium.  

In addition to the use of neonicotinoids on flowering crops, research since 2013 has demonstrated 

neonicotinoid migration into and persistence in agricultural soils, waterways and constituent parts of 

non-crop vegetation. Where assessments have been made of concentrations likely to significantly 

negatively affect non-target organisms, levels have been demonstrated to be above these thresholds 

in numerous non-crop agricultural habitats.  

The strongest evidence for this is found in waterbodies surrounding agricultural areas, both 

temporary and permanent. The impact of neonicotinoids on aquatic organisms appears to be the 

easiest to quantify, as field-realistic concentrations can be easily obtained through sample collection 

and once neonicotinoids are present in waterbodies, aquatic organisms cannot limit their exposure 

to them. In contrast, assessing the field-realistic exposure of bees to neonicotinoids is much harder, 

as it will depend on numerous factors including but not limited to: the type of flowering crop, its 

relative attractiveness compared to existing available forage, the crop type and levels of 

neonicotinoid loss into the wider environment through seed dust and leaching, soil type and organic 

content and consequent retention of neonicotinoid active ingredient, uptake of neonicotinoids by 

surrounding vegetation and relative collection of pollen and nectar from various wild plants 

containing variable levels of neonicotinoids at different parts of the year. In addition, wild and 

managed bees have traits such as flight period, floral choice preferences and social structure that 

vary radically between different bee species, as can be clearly seen in the three most commonly 

used bee model organisms A. mellifera, B. terrestris and O. bicornis. As such, it is much more difficult 

to gain a completely accurate and consistent measure of neonicotinoid exposure for taxa such as 

these.  

However, whilst these aforementioned factors are all important, it is still possible to comment on 

likely outcomes based on average exposure levels across a range of studies. This is as true for other 

taxa as it is for bees. Given these caveats, it is clear that since 2013, new research has substantially 

advanced our understanding of the effect of neonicotinoids on non-target organisms in the following 

areas: 

 Non-flowering crops treated with neonicotinoids can pose a risk to non-target organisms 

through increasing mortality in beneficial predator populations. 

 Neonicotinoids can persist in agricultural soils for several years, leading to chronic 

contamination and, in some instances, accumulation over time. 

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/098897doi: bioRxiv preprint first posted online Jan. 6, 2017; 

http://dx.doi.org/10.1101/098897
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Neonicotinoids continue to be found in a wide range of different waterways including 

ditches, puddles, ponds, mountain streams, rivers, temporary wetlands, snowmelt, 

groundwater and in outflow from water processing plants. 

 Reviews of the sensitivity of aquatic organisms to neonicotinoids show that many aquatic 

insect species are several orders of magnitude more sensitive to these compounds than the 

traditional model organisms used in regulatory assessments for pesticide use. 

 Neonicotinoids have been shown to be present in the pollen, nectar and foliage of non-crop 

plants adjacent to agricultural fields. This ranges from herbaceous annual weeds to 

perennial woody vegetation. We would thus expect non-target herbivorous insects and non-

bee pollinators inhabiting field margins and hedgerows to be exposed to neonicotinoids. Of 

particular concern, this includes some plants sown adjacent to agricultural fields specifically 

for the purposes of pollinator conservation. 

 Correlational studies have suggested a link between neonicotinoid usage in agricultural 

areas and population metrics for butterflies, bees and insectivorous birds in three different 

countries. 

 

4.2 Existing knowledge gaps and future research 

Whilst much research has been conducted on neonicotinoid pesticides and their impact on non-

target organisms since 2013, a number of key knowledge gaps exist. As stated by Godfray et al. 

(2015) in their update on the existing scientific literature concerning neonicotinoids and insect 

pollinators, it is important to remember that major gaps in our understanding occur and different 

policy conclusions can be drawn depending on the weight given to important (but not definitive) 

scientific findings and the economic and other interests of different stakeholders. This review is not 

intended as a risk assessment, simply as a review of advances in our scientific understanding of the 

environmental risks that neonicotinoids pose. 

From the perspective of better understanding the impacts of neonicotinoids on non-target 

organisms, further research is needed in the following areas: 

 Whilst the impact of neonicotinoids on bees have been relatively well studied, few data exist 

for most taxa. The sensitivity of non-pest herbivorous taxa and important natural enemies of 

crop pests to neonicotinoids are particularly poorly understood.  

 Continue to improve our understanding of realistic neonicotinoid and other pesticide 

exposure in agricultural and non-agricultural areas for understudied taxa. The implications of 

laboratory studies assessing the lethal and sublethal impacts of neonicotinoids are unclear 

without a realistic baseline for comparison with real world conditions. Data are most lacking 

for herbivorous, soil dwelling, parasitic and predatory invertebrates and granivorous and 

insectivorous terrestrial vertebrates. 

 In addition to sensitivity and exposure, the movement of neonicotinoids through trophic 

levels is poorly understood with the exception of a few field studies which demonstrate the 

principle. Some authors have linked direct neonicotinoid exposure with declines in higher 

trophic level organisms, but little to no data exist regarding these claims.  

 Long-term datasets exist that have demonstrated recent population declines across various 

taxa, with the most pronounced declines correlating with neonicotinoid use. Whilst these 

studies are suggestive in their own right, the effects of general agricultural intensification 

relative to the effects of neonicotinoid pesticides must be teased apart if long term declines 

in taxa are to be better understood and reversed.  
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 Possible synergistic and additive effects of neonicotinoids with other pesticides are still 

poorly understood for bees, and almost nothing is known about their effects on other non-

target taxa. This problem is compounded by a lack of understanding of field-realistic 

exposures to the various constituent active ingredients, with different taxa likely to be 

receiving different doses depending on their interaction with agricultural environments. 

 

4.3 Closing statement 

Recent work on neonicotinoids continues to improve our understanding of how these compounds 

move through and persist in the wider environment. These water soluble compounds are not 

restricted to agricultural crops, instead permeating most parts of the agricultural environments in 

which they are used and in some cases reaching further afield via waterways and runoff water. Field-

realistic laboratory experiments and field trials continue to demonstrate that residual neonicotinoid 

traces  can have a mixture of lethal and sublethal effects on a wide range of taxa. Relative to the risk 

assessments produced in 2013 for clothianidin, imidacloprid and thiamethoxam which focussed on 

their effects on bees, new research strengthens arguments for the imposition of a moratorium on 

their use, in particular because it has become evident that they pose significant risks to many non-

target organisms, not just bees. Given the improvement in scientific knowledge of how 

neonicotinoids move into the wider environment from all crop types, a discussion on the risks posed 

by their use on non-flowering crops and in non-agricultural areas is urgently needed.  
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