Gateway Health and Environmental Effects Citations

1. EPA weight-of evidence category, "not classifiable as to human carcinogenicity", usually due to inadequate data. US EPA, 2005. Office of Pesticide Programs. List of Chemicals Evaluated for Carcinogenic Potential. September 30, 2018. http://npic.orst.edu/chemicals_evaluated.pdf

2. US EPA Office of Pesticide Programs. List of Chemicals Evaluated for Carcinogenic Potential. September 30, 2019. http://npic.orst.edu/chemicals_evaluated.pdf

3. International Agency for Research on Cancer, World Health Organization (IARC) category, the agent (mixture) is possibly carcinogenic to humans. November 2, 2018. http://monographs.iarc.fr/ENG/Classification/index.php

4. Extension Toxicology Network (EXTOXNET) Pesticide Information Profiles. http://extoxnet.orst.edu/pips/ghindex.html

5. Illinois EPA, Endocrine Disruptors Strategy, February 1997. https://nepis.epa.gov/Exe/ZyNET.exe/910140ZK.txt

6. Northwest Coalition for Alternatives to Pesticides (NCAP), Pesticide Factsheets. http://www.pesticide.org/pesticide-factsheets.

7. Beyond Pesticides ChemWatch Factsheets. (Cited under factsheets on Beyond Pesticides Gateway)

8. US EPA, Office of Prevention, Pesticides and Toxic Substances, Reregistration Eligibility Decisions (REDs), Interim REDS (iREDs) and RED Factsheets. https://archive.epa.gov/pesticides/reregistration/web/html/status.html.

9. Picloram causes birth defects when used in combination with 2,4-D (as is common in formulations), according to Reference #3.

10. EPA weight-of-evidence category, "possible human carcinogen." US EPA, 2004. Office of Pesticide Programs. List of Chemicals Evaluated for Carcinogenic Potential. July 29, 2004. http://www.epa.gov/pesticides/carlist/

11. US EPA, 2000. Table 1: Toxicity Data by Category for Chemicals Listed under EPCRA Section 313. Toxic Release Inventory (TRI) Program. https://www.epa.gov/sites/production/files/documents/hazard_categories.pdf

12. EPA weight-of-evidence category, "Likely to be carcinogenic to humans (high dose); Not likely to be carcinogenic to humans (low doses)." US EPA, 2005. Office of Pesticide Programs. List of Chemicals Evaluated for Carcinogenic Potential. May 10, 2005. http://www.epa.gov/pesticides/carlist/

13. Frazier, L. and M.L. Hage. 2001. Reproductive Hazards of the Workplace. Europe: Wiley. Table 10: Partial List of Reproductive Toxins. https://web.archive.org/web/20100624221623/http://www.biosci.osu.edu/safety/CHP/Tables2001/Table10-11-00.pdf.

14. Environmental Defense Fund, Scorecard Database. http://www.scorecard.org/chemical-profiles/.

15. EPA weight-of-evidence category, "Group B2 – Probable Human Carcinogen." US EPA, 2005. Office of Pesticide Programs. List of Chemicals Evaluated for Carcinogenic Potential. May 10, 2005. http://www.epa.gov/pesticides/carlist/

16. EPA weight-of-evidence category, "Likely to be carcinogenic to humans." US EPA, 2005. Office of Pesticide Programs. List of Chemicals Evaluated for Carcinogenic Potential. May 10, 2005. http://www.fluoridealert.org/wp-content/pesticides/pesticides.cancer.potential.2006.pdf 

17. New Jersey Department of Health and Senior Services, Right to Know Hazardous Substances Fact Sheets. Available online at http://web.doh.state.nj.us/rtkhsfs/indexfs.aspx

18. Gosselin, R.E., R.P. Smith, and H.C. Hodge. 1984. Clinical Toxicology of Commerical Products, 5th edition. Baltimore, MD: Williams and Wilkins.

19. Tew, J.E. 1996. Protecting Honeybees from Pesticides. Ohio State University Cooperative Extension. http://web.archive.org/web/20031123075324/http://beelab.osu.edu/factsheets/sheets/2161.html

20. Briggs, S.A. 1992. Basic Guide to Pesticides: Their Characteristics and Hazards. Washington, DC: The Rachel Carson Council, 98. https://www.cabdirect.org/cabdirect/abstract/19932334845

21. California Environmental Protection Agency. Proposition 65: Chemicals Known to the State to Cause Cancer or Reproductive Toxicity. Office of Environmental Health Hazard Assessment. February 25, 2022.https://oehha.ca.gov/media/downloads/proposition-65//p65chemicalslistsinglelisttable2021p.pdf

22. US EPA, 2006. Hazard Assessment of the Organophosphates. Hazard ID Committee Report. http://www.epa.gov/oppsrrd1/cumulative/2006-op/op_cra_main.pdf

23. US EPA, 1995. Monosodium Methanearsonate and Disodium Methanearsonate; Toxic Chemical Release Reporting; Community Right-to-Know. Federal Register Environmental Documents. https://www.govinfo.gov/app/details/FR-1995-04-20/95-9782.

24. US EPA. Integrated Risk Information System Database. http://www.epa.gov/iris/.

25. The Pesticide Management Education Program at Cornell University. Pesticide Active Ingredient Information. http://pmep.cce.cornell.edu/profiles/index.html.

26. EPA weight-of-evidence category, "Suggestive evidence of carcinogenicity but not sufficient to assess human carcinogenic potential." US EPA, 2005. Office of Pesticide Programs. List of Chemicals Evaluated for Carcinogenic Potential. May 10, 2005. http://www.epa.gov/pesticides/carlist/

27. National Library of Medicine. PubChem Hazardous Substances Database. PubChem (nih.gov) 

28. Colborn, T., et al. 1994. Developmental Effects of Endocrine-Disrupting Chemicals in Wildlife and Humans. Environmental Impact Assessment Review 14:469-489. https://ehp.niehs.nih.gov/doi/10.1289/ehp.93101378.

29. Agency for Toxic Substances and Disease Registry. ToxFAQs. http://www.atsdr.cdc.gov/toxfaqs/index.asp.

30. Colborn, T., D. Dumanoski, and J.P. Myers. 1996. Our Stolen Future: Are We Threatening Our Fertility, Intelligence, and Survival? New York: Dutton. http://ourstolenfuture.org/Basics/chemlist.htm

31. Feldman, J. and T. Shistar. 1997. Poison Poles: A Report About their toxic trail and the safer alternatives. National Coalition Against the Misuse of Pesticides. https://www.beyondpesticides.org/programs/wood-preservatives/publications/poison-poles.

32. Department of Pesticide Regulation (DPR), Endosulfan- Risk Characterization Document. California Environmental Protection Agency, 2007. https://www.cdpr.ca.gov/docs/emon/pubs/tac/tacpdfs/endosulfan/endosulfan_sum.pdf.

33. Californians for Alternatives to Toxics (CATs). Toxicological Profiles. http://alt2tox.org/tox_profiles.htm.

34. Insecticide Resistance Action Committe (IRAC) eClassification of Chemical Mode of Action http://www.irac-online.org/eClassification/

35. Registry of Toxic Effects of Chemical Substances (RTECS). http://www.cdc.gov/niosh/rtecs/default.html

36. European Commission. Endocrine Disruptors: Study on Gathering Information on 435 Substances with Insufficient Data. Final Report. EU DG Environment: B4-3040/2001/325850/MAR/C2. BKH Consulting Engineers: M0355037. November 2002. http://ec.europa.eu/environment/chemicals/endocrine/pdf/bkh_report.pdf#page=76.

37. U.S. Geological Survey, Pesticides in the Nation's Streams and Ground Water, 1992-2001. http://water.usgs.gov/nawqa/pnsp/pubs/circ1291/appendix7.

38. Thurman, E.M. and A.E. Cromwell. 2000. Atmospheric Transport, Deposition, and Fate of Triazine Herbicides and Their Metabolites in Pristine Areas at Isle Royale National Park. Environmental Science and Technology 34:3079-3085. http://pubs.acs.org/doi/abs/10.1021/es000995l.

39. U.S. EPA, Office of Prevention, Pesticides and Toxic Substances, New Active Ingredients Factsheets:
http://web.archive.org/web/20120107215849/http://www.epa.gov/opprd001/factsheets/index.htm

40. Mineau, P., A. Baril, B.T. Collins , J. Duffe, G. Joerman, R. Luttik. 2001. Reference values for comparing the acute toxicity of pesticides to birds. Reviews of Environmental Contamination and Toxicology 170:13-74. http://web.archive.org/web/20081006213641/http://www.abcbirds.org/abcprograms/policy/pesticides/aims/aims/toxicitytable.cfm

41. Arctic Monitoring and Assessment Programme. 2009. AMAP Assessment 2009: Human Health in the Arctic. https://www.amap.no/documents/doc/amap-assessment-2009-human-health-in-the-arctic/98.

42. Hageman, et al. 2006. Atmospheric Deposition of Current-Use and Historic-Use Pesticides in Snow at National Parks in the Western United States. Environ. Sci. Technol., 2006, 40 (10), pp 3174–3180. http://pubs.acs.org/doi/abs/10.1021/es060157c

43. Pesticide Action Network Pesticide Database. http://www.pesticideinfo.org/Search_Chemicals.jsp.

44. Federal Register. September 5, 2008. http://www.epa.gov/fedrgstr/EPA-PEST/2008/September/Day-05/p20548.htm

45. Federal Register. March 21, 2003. http://www.epa.gov/fedrgstr/EPA-PEST/2003/March/Day-21/p6822.htm

46. Fluoride Action Alert Pesticide Project Factsheets. http://www.fluoridealert.org/f-pesticides.htm

47. EPA docket ID EPA-HQ-OPP-2010-0324. August 17, 2011. https://www.regulations.gov/docket?D=EPA-HQ-OPP-2010-0324.

48. USDA/Forest Service. Dinotefuran: Human Health and Ecological Risk Assessment Final Report. April 24, 2009. http://www.fs.fed.us/foresthealth/pesticide/pdfs/0521803b_Dinotefuran.pdf.

49. U.S. Department of Energy Bonneville Power Administration. 2000. Halosulfuron: Herbicide Fact Sheet https://www.bpa.gov/efw/Analysis/NEPADocuments/nepa/Vegetation_Management/sheets/Halosulfuron.pdf.

50.IUPAC Agrochemical Information. http://sitem.herts.ac.uk/aeru/iupac/

51. Federal Register. Fenbuconazole Pesticide Tolerance. January 15, 2002. http://www.epa.gov/fedrgstr/EPA-PEST/2003/March/Day-21/p6822.htm.

52. California Department of Pesticide Regulation, Public Reports on New Active Ingredients http://www.cdpr.ca.gov/docs/registration/ais/publicreports/publicreports.htm

53. EPA Pesticide Registration Review Status http://www.epa.gov/oppsrrd1/registration_review/reg_review_status.htm

54. National Toxiocology Program. 14th Report on Carcinogens. Nov 3, 2016. https://ntp.niehs.nih.gov/pubhealth/roc/index-1.html.

55. University of California Statewide Integrated Pest Management Program. Pesticide Information. http://www.ipm.ucdavis.edu/GENERAL/pesticides.html

56. PAN Pesticide Database. http://www.pesticideinfo.org/Search_Chemicals.jsp

57. Yueh, MF et al. 2014. The commonly used antimicrobial additive triclosan is a liver tumor promoter. PNAS doi: 10.1073/pnas.141911911. Triclosan promotes liver cancer cell development and proliferation in mice through pathways common to humans.

58. Kim, J et al. 2017. Triclosan affects axon formation in the neural development stages of zebrafish embryos (Danio rerio). Environmental Pollution doi: 10.1016/j.enjvpol.2017.12.110.

59. Lassen et al. 2016. Prenatal Triclosan Exposure and Anthropometric Measures Including Anogenital Distance in Danish Infants. Environmental Health Perspectives doi: 10.1289/ehp.1409637. Prenatal triclosan exposure associated with reduced head circumference, a trait linked to cognitive impairment.

60. Stuart, M et al. 2012. Review of risk from potential emerging contaminants in UK groundwater. Science of the Total Environment 416, 1-21. UK Environment Agency detected triclosan in groundwater 22 times in 22 sites over the period 1992-2009, at a maximum concentration of 2.11 µg/L.

61. Karnjanapiboonwong, A et al. 2011. Occurrence of PPCPs at a Wastewater Treatment Plant and in Soil and Groundwater at a Land Application Site. Water, Air, & Soil Pollution 216(1-4), 257-273. Triclosan detected in 5 out of 7 groundwater samples from a West Texas Land Application Site, at concentrations ranging 12-53 ng/L.

62. Parenti, CC et al. 2018. Environmental concentrations of triclosan activate cellular defence mechanism and generate cytotoxicity on zebrafish (Danio rerio) embryos. Science of the Total Environment 650, 1752-1758. Triclosan levels commonly found in the environment invoke oxidative stress immune responses and cause high levels of cell death in zebrafish embryos.

63. Lee, HR et al. 2014. Progression of Breast Cancer Cells Was Enhanced by Endocrine-Disrupting Chemicals, Triclosan and Octylphenol, via an Estrogen Receptor-Dependent Signaling Pathway in Cellular and Mouse Xenograft Models. Chemical Research in Toxicology doi: 10.1021/tx5000156.

64. Riad, M et al. 2017. Reproductive toxic impact of subchronic treatment with combined butylparaben and triclosan in weanling male rats. J Biochem Mol Toxicol doi: 10.1002/jbt.22037. Treatment with triclosan alone causes testicular oxidative stress and DNA damage, leading to a marked reduction in sperm count and sperm motility.

65. Jurewicz, J et al. 2017. Environmental levels of triclosan and male fertility. Environmental Science and Pollution Research 25(6), 5484-5490. Men with higher urinary concentrations of triclosan have poorer semen quality, exhibiting a greater percentage of sperm with abnormal morphology as compared to men with lower triclosan levels.

66. Kang, D. et al., 2008. Cancer incidence among pesticide applicators exposed to trifluralin in the Agricultural Health Study. Environmental Research, 107(2), 271-276. Regression analysis of pesticide exposures and cancer incidence across a cohort of 50,127 private and commercial pesticide applicators show that above-average levels of trifularlin exposure significantly predict incidence of colon cancer, controlling for lifestyle factors and other agricultural exposures.

67. Kılıç, Z.S., Aydın, S., Bucurgat, Ü.Ü. and Başaran, N., 2018. In vitro genotoxicity assessment of dinitroaniline herbicides pendimethalin and trifluralin. Food and Chemical Toxicology, 113, 90-98. Trifluralin exposure at concentrations as low as 1.7 ppb causes significant damage to DNA and chromosomes in human peripheral lymphocytes, demonstrating genotoxicity as a mechanism of carcinogenicity. 

68. Saghir, S.A., Charles, G.D., Bartels, M.J., Kan, L.H., Dryzga, M.D., Brzak, K.A. and Clark, A.J., 2008. Mechanism of trifluralin-induced thyroid tumors in rats. Toxicology Letters, 180(1) 38-45. Trifluralin treatment increased the conjugation and excretion of thyroid hormones (TH), thereby increasing pituitary production of thyroid stimulating hormone (TSH) and causing thyroid tumor development. The mode of action for tumor promotion by trifluralin has relevance to human health, as increased bile excretion coupled with decreased functioning of a shared class of thyroid hormone binding agents would be expected to cause similar effects in humans.

69. Emmerson, J.L., Pierce, E.C., McGrath, J.P., 1980. The chronic toxicity of compound 36352 (trifluralin) given as a compound of the diet to the Fischer 344 rats for two years. StudiesR-87 andR-97 (Elanco Products Co., Division of Eli Lilly and Co., Indianapolis, IN). Cited in Reregistration Eligibility Decision (RED) on trifluralin, USEPA, Office of Prevention, Pesticides and Toxic Substances. EPA 738-R-95-040, April 1996. Chronic exposure to trifluralin causes thyroid tumor development in rats.

70. Zhang, L., Rana, I., Taioli, E., Shaffer, R.M. and Sheppard, L., 2019. Exposure to Glyphosate-Based Herbicides and Risk for Non-Hodgkin Lymphoma: A Meta-Analysis and Supporting Evidence. Mutation Research/Reviews in Mutation ResearchMeta-analysis of every available published human study on NHL and glyphosate, including the most recently updated data from the ongoing U.S. Agricultural Health Study, published in 2018. Statistical analysis revealed a 41% increased risk of NHL resulting from high exposure to glyphosate-based herbicide.

71. EFSA, 2018. Peer review of the pesticide risk assessment of the active substance variant florpyrauxifen-benzyl: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2018.5378.

72. Khanam, S., 2017. Effect of Carbaryl on Hemoglobin and Hematocrit Values of Broiler Chicks. Malaysian Journal of Medical Research, 1(2), pp.38-40. http://ejournal.lucp.net/index.php/mjmr/article/view/139

73. Hussain R, Ali F, Rafique A, Ghaffar A, Jabeen G, Rafay M, Liaqat S, Khan I, Malik R, Khan MK, Niaz M, Akram K and Masood A, 2019. Exposure to sub-acute concentrations of glyphosate induce clinicohematological, serum biochemical and genotoxic damage in adult cockerels. Pak Vet J, 39(2): 181-186. http://dx.doi.org/10.29261/pakvetj/2019.064

74. Neto da Silva, K., Garbin Cappellaro, L., Ueda, C.N., Rodrigues, L., Pertile Remor, A., Martins, R.D.P., Latini, A. and Glaser, V., 2020. Glyphosate-based herbicide impairs energy metabolism and increases autophagy in C6 astroglioma cell line. Journal of Toxicology and Environmental Health, Part A, pp.1-15. https://www.tandfonline.com/doi/abs/10.1080/15287394.2020.1731897

75. Rappazzo, K.M., Warren, J.L., Davalos, A.D., Meyer, R.E., Sanders, A.P., Brownstein, N.C. and Luben, T.J., 2019. Maternal residential exposure to specific agricultural pesticide active ingredients and birth defects in a 2003–2005 North Carolina birth cohort. Birth defects research, 111(6), pp.312-323. https://onlinelibrary.wiley.com/doi/epdf/10.1002/bdr2.1448

76. Ledoux, M.L., Hettiarachchy, N., Yu, X., Howard, L. and Lee, S.O., 2019. Penetration of glyphosate into the food supply and the incidental impact on the honey supply and bees. Food Control, p.106859. https://doi.org/10.1016/j.foodcont.2019.106859

77. Zgurzynski, M.I. and Lushington, G.H., 2019. Glyphosate Impact on Apis mellifera Navigation: A Combined Behavioral and Cheminformatics Study. EC Pharmacology and Toxicology, 7, pp.806-824. https://www.ecronicon.com/ecpt/pdf/ECPT-07-00336.pdf

78. Rendón-von Osten, J. and Dzul-Caamal, R., 2017. Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: a survey in Hopelchén, Campeche, Mexico. International journal of environmental research and public health, 14(6), p.595. https://www.mdpi.com/1660-4601/14/6/595/htm

79.Lennon, R.J., Peach, W.J., Dunn, J.C., Shore, R.F., Pereira, M.G., Sleep, D., Dodd, S., Wheatley, C.J., Arnold, K.E. and Brown, C.D., 2020. From seeds to plasma: Confirmed exposure of multiple farmland bird species to clothianidin during sowing of winter cereals. Science of the Total Environment, p.138056. https://doi.org/10.1016/j.scitotenv.2020.138056

80. Office of Prevention, Pesticides and Toxic Substances, 1998. Memorandum - Isoxaflutole. Environmental Protection Agency. https://www3.epa.gov/pesticides/chem_search/cleared_reviews/csr_PC-123000_5-Feb-98_a.pdf. Accessed 2020.

81.Reuter, W., 2019. Toxicology of glyphosate, isoxaflutole, dicamba and possible combination effects. Testbiotech.www.testbiotech.org/sites/default/files/Tox_Evaluation _Glyphosate _Dicamba_Isoxaflutole.pdf. Accessed 2020.

82. Mesnage, R., Biserni, M., Wozniak, E., Xenakis, T., Mein, C.A. and Antoniou, M.N., 2018. Comparison of transcriptome responses to glyphosate, isoxaflutole, quizalofop-p-ethyl and mesotrione in the HepaRG cell line. Toxicology reports, 5, pp.819-826. https://doi.org/10.1016/j.toxrep.2018.08.005

83. Melo, C.A.D., Medeiros, W.N., Santos, L.T., Ferreira, F.A., Tiburcio, R.A.S. and Ferreira, L.R., 2010. Leaching of sulfentrazone, isoxaflutole and oxyfluorfen in three soil profiles. Planta Daninha, 28(2), pp.385-392. 10.1590/S0100-83582010000200018

84. Hu, Y., Zhang, Y., Vinturache, A., Wang, Y., Shi, R., Chen, L., Qin, K., Tian, Y. and Gao, Y., 2020. Effects of environmental pyrethroids exposure on semen quality in reproductive-age men in Shanghai, China. Chemosphere, 245, p.125580. https://doi.org/10.1016/j.chemosphere.2019.125580 

85. Walsh, E.M., Sweet, S., Knap, A., Ing, N. and Rangel, J., 2020. Queen honey bee (Apis mellifera) pheromone and reproductive behavior are affected by pesticide exposure during development. Behavioral Ecology and Sociobiology, 74(3), pp.1-14. https://doi.org/10.1007/s00265-020-2810-9

86. Park, A.S., Ritz, B., Yu, F., Cockburn, M. and Heck, J.E., 2020. Prenatal pesticide exposure and childhood leukemia–A California statewide case-control study. International journal of hygiene and environmental health, 226, p.113486. DOI: 10.1016/j.ijheh.2020.113486 

87. Anselmi, L., Bove, C., Coleman, F.H., Le, K., Subramanian, M.P., Venkiteswaran, K., Subramanian, T. and Travagli, R.A., 2018. Ingestion of subthreshold doses of environmental toxins induces ascending Parkinsonism in the rat. npj Parkinson's Disease, 4(1), pp.1-10. DOI: 10.1038/s41531-018-0066-0

88. Brouwer, M., Huss, A., van der Mark, M., Nijssen, P.C., Mulleners, W.M., Sas, A.M., Van Laar, T., de Snoo, G.R., Kromhout, H. and Vermeulen, R.C., 2017. Environmental exposure to pesticides and the risk of Parkinson's disease in the Netherlands. Environment international, 107, pp.100-110. DOI: 10.1016/j.envint.2017.07.001

89. Hou, L., Zhang, C., Wang, K., Liu, X., Wang, H., Che, Y., Sun, F., Zhou, X., Zhao, X. and Wang, Q., 2017. Paraquat and maneb co-exposure induces noradrenergic locus coeruleus neurodegeneration through NADPH oxidase-mediated microglial activation. Toxicology, 380, pp.1-10. DOI: 10.1016/j.tox.2017.02.009

90. de Mattos, I.M., Soares, A.E. and Tarpy, D.R., 2018. Mitigating effects of pollen during paraquat exposure on gene expression and pathogen prevalence in Apis mellifera L. Ecotoxicology, 27(1), pp.32-44. DOI: 10.1007/s10646-017-1868-2

91. Badroo, I.A., Wani, K.A., Nandurkar, H.P. and Khanday, A.H., 2019. Renewal Acute Toxicity of Broad-Spectrum Herbicide, Paraquat Dichloride in Channa punctatus (Bloch). Environmental Claims Journal, 31(4), pp.289-303. DOI: 10.1080/10406026.2019.1609796

92. Ayanda, O.I., Oniye, S.J. and Auta, J.A., 2017. Behavioural and Some Physiological Assessment of Glyphosate and Paraquat Toxicity to Juveniles of African Catfish, Clarias gariepinus. pakistan Journal of Zoology, 49(1), pp.183-190. DOI: 10.17582/journal.pjz/2017.49.1.83.190

93. Moustakas, M., Malea, P., Zafeirakoglou, A. and Sperdouli, I., 2016. Photochemical changes and oxidative damage in the aquatic macrophyte Cymodocea nodosa exposed to paraquat-induced oxidative stress. Pesticide biochemistry and physiology, 126, pp.28-34. DOI: 10.1016/j.pestbp.2015.07.003

94. Verissimo, G., Moreira, J.C. and Meyer, A., 2018. Paraquat Contamination in Surface Waters of a Rural Stream in the Mountain Region in the State of Rio De Janeiro Southeastern Brazil. J Environ Toxicol Stud, 2(1). DOI: http://dx.doi.org/10.16966/2576-6430.111

95. Thi Hue, N., Nguyen, T.P.M., Nam, H. and Hoang Tung, N., 2018. Paraquat in Surface Water of Some Streams in Mai Chau Province, the Northern Vietnam: Concentrations, Profiles, and Human Risk Assessments. Journal of Chemistry, 2018. DOI: 10.1155/2018/8521012

96. Hojo, Y., Shiraki, A., Tsuchiya, T., Shimamoto, K., Ishii, Y., Suzuki, K., Shibutani, M. and Mitsumori, K., 2012. Liver tumor promoting effect of etofenprox in rats and its possible mechanism of action. The Journal of toxicological sciences, 37(2), pp.297-306. https://doi.org/10.2131/jts.37.297

97. Benli, A.C.K., 2015. The influence of etofenprox on narrow clawed crayfish (Astacus leptodactylus Eschscholtz, 1823): Acute toxicity and sublethal effects on histology, hemolymph parameters, and total hemocyte counts. Environmental toxicology, 30(8), pp.887-894. https://onlinelibrary.wiley.com/doi/abs/10.1002/tox.21963

98. Pesticide Action Network, 2019. PAN Pesticide Database. http://www.pesticideinfo.org/Detail_Chemical.jsp?Rec_Id=PRI3067 

99. De Coster, S. and Van Larebeke, N., 2012. Endocrine-disrupting chemicals: associated disorders and mechanisms of action. Journal of environmental and public health, 2012. https://doi.org/10.1155/2012/713696

100. Hayashi, K., Nakae, A., Fukushima, Y., Sakamoto, K., Furuichi, T., Kitahara, K., Miyazaki, Y., Ikenoue, C., Matumoto, S. and Toda, T., 2010. Contamination of rice by etofenprox, diethylphthalate and alkylphenols: effects on first delivery and sperm count in mice. The Journal of toxicological sciences, 35(1), pp.49-55. https://doi.org/10.2131/jts.35.49

101. Terzaghi, E., Vitale, C.M. and Di Guardo, A., 2020. Modelling peak exposure of pesticides in terrestrial and aquatic ecosystems: importance of dissolved organic carbon and vertical particle movement in soil. SAR and QSAR in Environmental Research, 31(1), pp.19-32. https://doi.org/10.1080/1062936X.2019.1686715

102. Merola, V. and Dunayer, E., 2006. The 10 most common toxicoses in cats. VETERINARY MEDICINE-BONNER SPRINGS THEN EDWARDSVILLE-, 101(6), p.339. https://www.aspcapro.org/sites/default/files/zl-vetm0606_339-342.pdf 

103. Pesticide Action Network, 2019. PAN Pesticide Database. http://www.pesticideinfo.org/Detail_Chemical.jsp?Rec_Id=PRI5323

104. Mossa, A.T.H., Refaie, A.A., Ramadan, A. and Bouajila, J., 2013. Antimutagenic effect of Origanum majorana L. essential oil against prallethrin-induced genotoxic damage in rat bone marrow cells. Journal of medicinal food, 16(12), pp.1101-1107. https://doi.org/10.1089/jmf.2013.0006

105. Bhaskar, E.M., Moorthy, S., Ganeshwala, G. and Abraham, G., 2010. Cardiac conduction disturbance due to prallethrin (pyrethroid) poisoning. Journal of Medical Toxicology, 6(1), pp.27-30. https://doi.org/10.1007/s13181-010-0032-7

106. Alam, Z., Mohsin, A., Yunus, S.M., Ahmad, F. and Faruqi, N.A., 2017. EFFECT OF PRALLETHRIN VAPOURS ON CEREBELLAR CORTEX OF ALBINO RATS: A NEUROHISTOLOGICAL STUDY. JOURNAL OF ANATOMICAL SCIENCES, 25(1), pp.8-11. http://www.asiup.in/journals/june-2017/JAS%20JOURNAL%202017.pdf#page=15

107. Botnariu, G., Birsan, C., Podoleanu, C., Moldovan, C., Stolnicu, S. and Chiriac, A., 2016. Skin necrosis caused by prallethrin—A worldwide used insecticide. Environmental toxicology and pharmacology, 43, pp.103-104. https://doi.org/10.1016/j.etap.2016.03.002

108. Na, H.G., Kim, Y.D., Choi, Y.S., Bae, C.H. and Song, S.Y., 2018. Allethrin and prallethrin stimulates MUC5AC expression through oxidative stress in human airway epithelial cells. Biochemical and biophysical research communications, 503(1), pp.316-322. https://doi.org/10.1016/j.bbrc.2018.06.022

109. Mossa, A.T.H., Refaie, A.A., Ramadan, A. and Bouajila, J., 2013. Amelioration of prallethrin-induced oxidative stress and hepatotoxicity in rat by the administration of Origanum majorana essential oil. BioMed research international, 2013. doi: 10.1155/2013/859085

110. Lerro, C.C., Hofmann, J.N., Andreotti, G., Koutros, S., Parks, C.G., Blair, A., Albert, P.S., Lubin, J.H., Sandler, D.P. and Beane Freeman, L.E., 2020. Dicamba use and cancer incidence in the agricultural health study: an updated analysis. International Journal of Epidemiology.https://doi.org/10.1093/ije/dyaa066

111.Herrero-Hernández, E., Simón-Egea, A.B., Sánchez-Martín, M.J., Rodríguez-Cruz, M.S. and Andrades, M.S., 2020. Monitoring and environmental risk assessment of pesticide residues and some of their degradation products in natural waters of the Spanish vineyard region included in the denomination of origin jumilla. Environmental Pollution, p.114666. https://doi.org/10.1016/j.envpol.2020.114666

112. Stoker, T.E. and Kavlock, R.J., 2010. Pesticides as endocrine-disrupting chemicals. In Hayes' Handbook of Pesticide Toxicology (pp. 551-569). Academic Press. https://doi.org/10.1016/B978-0-12-374367-1.00018-5

113. Knudsen, T.B., Martin, M.T., Kavlock, R.J., Judson, R.S., Dix, D.J. and Singh, A.V., 2009. Profiling the activity of environmental chemicals in prenatal developmental toxicity studies using the US EPA's ToxRefDB. Reproductive toxicology, 28(2), pp.209-219. https://doi.org/10.1016/j.reprotox.2009.03.016

114. Ran, D., Wu, X., Zheng, J., Yang, J., Zhou, H., Zhang, M. and Tang, Y., 2007. Study on the interaction between florasulam and bovine serum albumin. Journal of fluorescence, 17(6), pp.721-726. https://doi.org/10.1007/s10895-007-0226-9

115. US EPA, Office of Prevention, Pesticides and Toxic Substances, Science Data Evaluation. https://iaspub.epa.gov/apex/pesticides/florasulam

116. The International Union of Pure and Applied Chemistry (IUPAC), Pesticide Properties Database (PPDB), florasulam (Ref: DE 570). https://sitem.herts.ac.uk/aeru/iupac/Reports/322.htm

117. The Dow Chemical Company, Product Safety Assessment, Florasulam. http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_07cf/0901b803807cfdd2.pdf?filepath=productsafety/pdfs/noreg/233-00436.pdf&fromPage=GetDoc

118. Hernández-Borges, J., García-Montelongo, F.J., Cifuentes, A. and Rodríguez-Delgado, M.Á., 2005. Determination of herbicides in mineral and stagnant waters at ng/L levels using capillary electrophoresis and UV detection combined with solid-phase extraction and sample stacking. Journal of Chromatography A, 1070(1-2), pp.171-177. https://doi.org/10.1016/j.chroma.2005.02.053

119. Weber, G., Christmann, N., Thiery, A.C., Martens, D. and Kubiniok, J., 2018. Pesticides in agricultural headwater streams in southwestern Germany and effects on macroinvertebrate populations. Science of the Total Environment, 619, pp.638-648. https://doi.org/10.1016/j.scitotenv.2017.11.155

120. Sandin, M., Piikki, K., Jarvis, N., Larsbo, M., Bishop, K. and Kreuger, J., 2018. Spatial and temporal patterns of pesticide concentrations in streamflow, drainage and runoff in a small Swedish agricultural catchment. Science of the Total Environment, 610, pp.623-634. https://doi.org/10.1016/j.scitotenv.2017.08.068

121. US EPA, Office of Prevention, Pesticides and Toxic Substances, Pesticide Fact Sheet. https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-129171_22-May-97.pdf

122. Wisconsin Department of Natural Resources, 2012. Imazamox Chemical Fact Sheet. https://dnr.wi.gov/lakes/plants/factsheets/ImazamoxFactsheet.pdf

123. Kaur, P., Kaur, P. and Kaur, K., 2020. Adsorptive removal of imazethapyr and imazamox from aqueous solution using modified rice husk. Journal of Cleaner Production244, p.118699. https://doi.org/10.1016/j.jclepro.2019.118699

124. Demirci, Ö., Toptancı, B.Ç. and Kızıl, M., 2016. In Vitro Studies on Pesticide-Induced Oxidative DNA Damage. Journal of the Turkish Chemical Society Section A: Chemistry3(3), pp.479-490. https://www.researchgate.net/profile/Oezlem_Demirci/publication/308977224_In_Vitro_Studies_on_Pesticide-Induced_Oxidative_DNA_Damage/links/58bf06a7aca272bd2a3acf3a/In-Vitro-Studies-on-Pesticide-Induced-Oxidative-DNA-Damage.pdf 

125. Di Marzio, W.D., Cifoni, M., Sáenz, M.E., Galassi, D.M. and Di Lorenzo, T., 2018. The ecotoxicity of binary mixtures of Imazamox and ionized ammonia on freshwater copepods: Implications for environmental risk assessment in groundwater bodies. Ecotoxicology and Environmental Safety149, pp.72-79. https://www.sciencedirect.com/science/article/pii/S0147651317307844

126. Tsatsakis, A., Tyshko, N.V., Docea, A.O., Shestakova, S.I., Sidorova, Y.S., Petrov, N.A., Zlatian, O., Mach, M., Hartung, T. and Tutelyan, V.A., 2019. The effect of chronic vitamin deficiency and long term very low dose exposure to 6 pesticides mixture on neurological outcomes–A real-life risk simulation approach. Toxicology letters315, pp.96-106. https://www.sciencedirect.com/science/article/pii/S0378427419302140

127. Taghizadehghalehjoughi, A. and Cicek, B., 2018. Momordica and Pycnogenol Can Tolerate Imazamox Induced Toxicity in L929 Cells Line: In Vitro Study. In Multidisciplinary Digital Publishing Institute Proceedings (Vol. 2, No. 25, p. 1584). https://doi.org/10.3390/proceedings2251584

128. Sevim, Ç., Çomaklı, S., Taghizadehghalehjoughi, A., Özkaraca, M., Mesnage, R., Kovatsi, L., Burykina, T.I., Kalogeraki, A., Antoniou, M.N. and Tsatsakis, A., 2019. An imazamox-based herbicide causes apoptotic changes in rat liver and pancreas. Toxicology reports6, pp.42-50. https://doi.org/10.1016/j.toxrep.2018.11.00

129. SEVĠM, A.G.Ç. and ÇOMAKLI, Ö.Ü.S., HĠSTOPATHOLOGĠCAL CHANGES OF THE TESTES ĠN COMMONLY USED HERBĠCĠDES (GLUFOSĠNATE AND IMAZAMOX) EXPOSURE. https://www.researchgate.net/profile/Cigdem_Sevim/publication/330214617_HISTOPATHOLOGICAL_CHANGES_OF_THE_TESTES_ON_COMMONLY_USED_HERBICIDES_GLUFOSINATE_AND_IMAZAMOX_EXPOSURE/links/5c346f0792851c22a3639eb0/HISTOPATHOLOGICAL-CHANGES-OF-THE-TESTES-ON-COMMONLY-USED-HERBICIDES-GLUFOSINATE-AND-IMAZAMOX-EXPOSURE.pdf

130. Jabłońska-Trypuć, A., Wydro, U., Wołejko, E., Rodziewicz, J., and Butarewicz, A., 2020. Possible Protective Effects of TA on the Cancerous Effect of Mesotrione. Nutrients12(5), p.1343. https://doi.org/10.3390/nu12051343

131. Jabłońska-Trypuć, A., Krętowski, R., Świderski, G., Cechowska-Pasko, M. and Lewandowski, W., 2020. Cichoric acid attenuates the toxicity of mesotrione. Effect on in vitro skin cell model. Environmental Toxicology and Pharmacology, p.103375. https://doi.org/10.1016/j.etap.2020.103375

132. Piancini, L.D.S., Guiloski, I.C., de Assis, H.S. and Cestari, M.M., 2015. Mesotrione herbicide promotes biochemical changes and DNA damage in two fish species. Toxicology reports2, pp.1157-1163. https://doi.org/10.1016/j.toxrep.2015.08.007

133. Albaugh, LLC, 2017. Safety Data Sheet for Mesotrione. http://www.cdms.net/ldat/mpE7L001.pdf

134. Syngenta, 2011. Tenacity Product Label. https://www.domyown.com/msds/Tenacity%20Herbicide%20Label.pdf

135. Smith-Schoenwalder, C. 2019. EPA Approves Pesticide Harmful to Bees. Retrieved October 27, 2020, from https://www.usnews.com/news/national-news/articles/2019-07-12/epa-approves-pesticide-harmful-to-bees

136. USEPA. 2010. Proposed Registration Review Final Decision for Nithiazine. Pesticide Re-evaluation Division. https://beta.regulations.gov/document/EPA-HQ-OPP-2008-0847-0010 

137. USEPA. 2016. Flonicamid Human Health Risk Assessment. Office of Pesticide Programs. https://beta.regulations.gov/document/EPA-HQ-OPP-2016-0013-0009

138. USEPA. Registration Review: Draft Human Health and/or Ecological Risk Assessments
for Several Pesticides (Flonicamid). Office of Pesticide Programs. https://oag.ca.gov/system/files/attachments/press-docs/Flonicamid%20Comment%20Letter.pdf

139. Corteva, 2012. DuPont Frontelis Fungicide. DUPONT FONTELIS FUNGICIDE.pdf (kern.ca.us)

140. USEPA, 2014. VELISTA Product Label. https://www3.epa.gov/pesticides/chem_search/ppls/000100-01534-20141120.pdf 

141. Jeong, M.H., Hong, S.S., Park, K.H., Kim, C.S., Park, J.E., Hong, M.K., Im, M.H., Kim, Y.B., Han, B.S. and Han, J.S., 2010. Toxicity Assessment and Establishment Acceptable Daily Intake of Penthiopyrad. The Korean Journal of Pesticide Science14(4), pp.478-489. https://www.koreascience.or.kr/article/JAKO201015537949224.page

142. USEPA, 1998. Biopesticides Fact Sheet for Phosphorous acid and its ammonium, sodium, and potassium salts Mono- and di-potassium salts of phosphorous acid. Office of Pesticide Programs. https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-076416_1-Oct-98.pdf

143. Ding, F., Liu, W., Diao, J.X., Yin, B., Zhang, L. and Sun, Y., 2011. Complexation of insecticide chlorantraniliprole with human serum albumin: Biophysical aspects. Journal of luminescence131(7), pp.1327-1335. https://doi.org/10.1016/j.jlumin.2011.03.007

144. Christen, V., Kunz, P.Y. and Fent, K., 2018. Endocrine disruption and chronic effects of plant protection products in bees: Can we better protect our pollinators?. Environmental Pollution243, pp.1588-1601. https://doi.org/10.1016/j.envpol.2018.09.117

145. Yuan, L., Lin, J., Peng, Y., Gao, R. and Sun, Q., 2020. Chlorantraniliprole induces adipogenesis in 3T3-L1 adipocytes via the AMPKα pathway but not the ER stress pathway. Food Chemistry311, p.125953. https://doi.org/10.1016/j.foodchem.2019.125953

146. USEPA, 2019. Chlorantraniliprole; Pesticide Tolerances. https://www.federalregister.gov/documents/2019/10/07/2019-21541/chlorantraniliprole-pesticide-tolerances.

147. Smagghe, G., Deknopper, J., Meeus, I. and Mommaerts, V., 2013. Dietary chlorantraniliprole suppresses reproduction in worker bumblebees. Pest management science69(7), pp.787-791. https://doi.org/10.1002/ps.3504

148. Marsala, R.Z., Capri, E., Russo, E., Bisagni, M., Colla, R., Lucini, L., Gallo, A. and Suciu, N.A., 2020. First evaluation of pesticides occurrence in groundwater of Tidone Valley, an area with intensive viticulture. Science of The Total Environment736, p.139730. https://doi.org/10.1016/j.scitotenv.2020.139730

149. Pandey, N., Rana, D., Chandrakar, G., Gowda, G.B., Patil, N.B., Annamalai, M., Pokhare, S.S., Rath, P.C. and Adak, T., 2020. Role of climate change variables (standing water and rainfall) on dissipation of chlorantraniliprole from a simulated rice ecosystem. Ecotoxicology and Environmental Safety205, p.111324. https://doi.org/10.1016/j.ecoenv.2020.111324

150. International Union of Pure and Applied Chemistry. 2021. Chlorantraniliprole. http://sitem.herts.ac.uk/aeru/iupac/Reports/1138.htm

151. Mikolić, A. and Karačonji, I.B., 2018. Imidacloprid as reproductive toxicant and endocrine disruptor: investigations in laboratory animals. Archives of Industrial Hygiene and Toxicology69(2), pp.103-108. https://doi.org/10.2478/aiht-2018-69-3144

152. Yuan, X., Shen, J., Zhang, X., Tu, W., Fu, Z. and Jin, Y., 2020. Imidacloprid disrupts the endocrine system by interacting with androgen receptor in male mice. Science of The Total Environment708, p.135163. https://doi.org/10.1016/j.scitotenv.2019.135163

153. Caron-Beaudoin, É., Viau, R. and Sanderson, J.T., 2018. Effects of neonicotinoid pesticides on promoter-specific aromatase (CYP19) expression in Hs578t breast cancer cells and the role of the VEGF pathway. Environmental health perspectives126(4), p.047014. https://ehp.niehs.nih.gov/doi/10.1289/EHP2698

154. Abou-Donia, M.B., Goldstein, L.B., Bullman, S., Tu, T., Khan, W.A., Dechkovskaia, A.M. and Abdel-Rahman, A.A., 2008. Imidacloprid induces neurobehavioral deficits and increases expression of glial fibrillary acidic protein in the motor cortex and hippocampus in offspring rats following in utero exposure. Journal of Toxicology and Environmental Health, Part A71(2), pp.119-130. doi.org/10.1080/15287390701613140

155. Duzguner, V. and Erdogan, S., 2010. Acute oxidant and inflammatory effects of imidacloprid on the mammalian central nervous system and liver in rats. Pesticide Biochemistry and Physiology97(1), pp.13-18. https://doi.org/10.1016/j.pestbp.2009.11.008

156. Yeh, I.J., Lin, T.J. and Hwang, D.Y., 2010. Acute multiple organ failure with imidacloprid and alcohol ingestion. The American journal of emergency medicine28(2), pp.255-e1. https://doi.org/10.1016/j.ajem.2009.05.006

157. Ahmad, N. and Naveed, K., 2012. Exposure to (Beta)-Cyfluthrin During Pregnancy Induces Teratogenecity in Murine Foetuses. Pakistan Journal of Zoology44(6). https://search.proquest.com/openview/2253783b7d5fcd19c0036882d4e65346/1?pq-origsite=gscholar&cbl=616534. 

158. Zhang, J., Zhu, W., Zheng, Y., Yang, J. and Zhu, X., 2008. The antiandrogenic activity of pyrethroid pesticides cyfluthrin and β-cyfluthrin. Reproductive toxicology25(4), pp.491-496. https://doi.org/10.1016/j.reprotox.2008.05.054

159. Sadowska-Woda, I., Wójcik, N., Karowicz-Bilińska, A. and Bieszczad-Bedrejczuk, E., 2010. Effect of selected antioxidants in β-cyfluthrin-induced oxidative stress in human erythrocytes in vitro. Toxicology in Vitro24(3), pp.879-884. https://doi.org/10.1016/j.tiv.2009.11.022

160. Go, R.E., Kim, C.W., Lee, S.M., Lee, H.K. and Choi, K.C., 2021. Fenhexamid induces cancer growth and survival via estrogen receptor-dependent and PI3K-dependent pathways in breast cancer models. Food and Chemical Toxicology, p.112000. 10.1016/j.fct.2021.112000

161. Degl'Innocenti, D., Ramazzotti, M., Sarchielli, E., Monti, D., Chevanne, M., Vannelli, G.B. and Barletta, E., 2019. Oxadiazon affects the expression and activity of aldehyde dehydrogenase and acylphosphatase in human striatal precursor cells: a possible role in neurotoxicity. Toxicology411, pp.110-121. https://doi.org/10.1016/j.tox.2018.10.021

162. Lemaire, G., Mnif, W., Pascussi, J.M., Pillon, A., Rabenoelina, F., Fenet, H., Gomez, E., Casellas, C., Nicolas, J.C., Cavailles, V. and Duchesne, M.J., 2006. Identification of new human pregnane X receptor ligands among pesticides using a stable reporter cell system. Toxicological Sciences91(2), pp.501-509. https://doi.org/10.1093/toxsci/kfj173

163. Laville, N., Balaguer, P., Brion, F., Hinfray, N., Casellas, C., Porcher, J.M. and Aït-Aïssa, S., 2006. Modulation of aromatase activity and mRNA by various selected pesticides in the human choriocarcinoma JEG-3 cell line. Toxicology228(1), pp.98-108. https://doi.org/10.1016/j.tox.2006.08.021

164. Kuwata, K., Inoue, K., Ichimura, R., Takahashi, M., Kodama, Y. and Yoshida, M., 2016. Constitutive active/androstane receptor, peroxisome proliferator-activated receptor α, and cytotoxicity are involved in oxadiazon-induced liver tumor development in mice. Food and Chemical Toxicology88, pp.75-86. https://doi.org/10.1016/j.fct.2015.12.017

165. Oluah, N.S., Mgbenka, B.O., Nwani, C.D., Aguzie, I.O., Ngene, I.C. and Oluah, C., 2020. Tissue-specific changes in Ca 2+-ATPase and Na+/K+-ATPase activities in freshwater African catfish Clarias gariepinus juvenile exposed to oxadiazon. The Journal of Basic and Applied Zoology81(1), pp.1-12. https://link.springer.com/article/10.1186/s41936-020-00186-8

166. Pietrzak, D., Kania, J., Malina, G., Kmiecik, E. and Wątor, K., 2019. Pesticides from the EU first and second Watch Lists in the water environment. Clean–Soil, Air, Water47(7), p.1800376. https://doi.org/10.1002/clen.201800376

167. Meffe, R. and de Bustamante, I., 2014. Emerging organic contaminants in surface water and groundwater: a first overview of the situation in Italy. Science of the Total Environment481, pp.280-295. https://doi.org/10.1016/j.scitotenv.2014.02.053

168. Fava, L., Orrù, M.A., Scardala, S., Alonzo, E., Fardella, M., Strumia, C., Martinelli, A., Finocchiaro, S., Previtera, M., Franchi, A. and Calà, P., 2010. Pesticides and their metabolites in selected Italian groundwater and surface water used for drinking. Annali dell'Istituto superiore di sanità46, pp.309-316. https://www.scielosp.org/article/ssm/content/raw/?resource_ssm_path=/media/assets/aiss/v46n3/v46n3a15.pdf

169. Bayer Environmental. 2018. Safety Data Sheet: RONSTAR® G HERBICIDE. https://www.domyown.com/msds/Ronstar_G_SDS.pdf

170. Devillers, J., 2002. Acute toxicity of pesticides to honey bees. Honey bees: estimating the environmental impact of chemicals. London: Taylor and Francis, pp.56-66.https://books.google.com/books

171. Teng, Y., Manavalan, T.T., Hu, C., Medjakovic, S., Jungbauer, A. and Klinge, C.M., 2013. Endocrine disruptors fludioxonil and fenhexamid stimulate miR-21 expression in breast cancer cells. Toxicological sciences131(1), pp.71-83. https://doi.org/10.1093/toxsci/kfs290

172. Orton, F., Rosivatz, E., Scholze, M. and Kortenkamp, A., 2011. Widely used pesticides with previously unknown endocrine activity revealed as in vitro antiandrogens. Environmental health perspectives119(6), pp.794-800. https://doi.org/10.1289/ehp.1002895

173. Go, R.E., Kim, C.W., Jeon, S.Y., Byun, Y.S., Jeung, E.B., Nam, K.H. and Choi, K.C., 2017. Fludioxonil induced the cancer growth and metastasis via altering epithelial–mesenchymal transition via an estrogen receptor‐dependent pathway in cellular and xenografted breast cancer models. Environmental Toxicology32(4), pp.1439-1454. https://doi.org/10.1002/tox.22337

174. Lee, G.H., Hwang, K.A. and Choi, K.C., 2019. Effects of Fludioxonil on the Cell Growth and Apoptosis in T and B Lymphocytes. Biomolecules9(9), p.500. https://doi.org/10.3390/biom9090500

175. Brandhorst, T.T. and Klein, B.S., 2019. Uncertainty surrounding the mechanism and safety of the post-harvest fungicide fludioxonil. Food and Chemical Toxicology123, pp.561-565. https://doi.org/10.1016/j.fct.2018.11.037

176. Coleman, M.D., O'Neil, J.D., Woehrling, E.K., Ndunge, O.B.A., Hill, E.J., Menache, A. and Reiss, C.J., 2012. A preliminary investigation into the impact of a pesticide combination on human neuronal and glial cell lines in vitro. PloS one7(8), p.e42768. https://doi.org/10.1371/journal.pone.0042768

177. Ko, E.B., Hwang, K.A. and Choi, K.C., 2019. Effects of fludioxonil on cardiac differentiation of mouse embryonic stem cells. In 21st European Congress of Endocrinology (Vol. 63). BioScientifica.

178. US EPA, 2015. Fludioxonil; Pesticide Tolerances. Federal Register. https://www.federalregister.gov/documents/2015/08/14/2015-20019/fludioxonil-pesticide-tolerances

179. Fenoll, J., Ruiz, E., Hellín, P., Flores, P. and Navarro, S., 2011. Heterogeneous photocatalytic oxidation of cyprodinil and fludioxonil in leaching water under solar irradiation. Chemosphere85(8), pp.1262-1268. https://doi.org/10.1016/j.chemosphere.2011.07.022

180. Lopez‐Antia, A., Feliu, J., Camarero, P.R., Ortiz‐Santaliestra, M.E. and Mateo, R., 2016. Risk assessment of pesticide seed treatment for farmland birds using refined field data. Journal of Applied Ecology53(5), pp.1373-1381. https://doi.org/10.1111/1365-2664.12668

181. Schmidt, S., 2018. Promotional Consideration: A Potential Mechanistic Link between Neonicotinoid Insecticides and Hormone-Dependent Breast Cancer. Environmental health perspectives126(11), p.114001. https://ehp.niehs.nih.gov/doi/10.1289/EHP4097

182. Cantor, K.P. 1992. Pesticides and other agricultural risk factors for non-Hodgkin’s lymphoma among men in Iowa and Minnesota. Cancer Res. 52:2447-2455. https://cancerres.aacrjournals.org/content/canres/52/9/2447.full.pdf

183. EFSA Panel on Plant Protection Products and their Residues (PPR), 2013. Scientific Opinion on the developmental neurotoxicity potential of acetamiprid and imidacloprid. EFSA Journal11(12), p.3471. https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2013.3471

184. Gasmi, S., Kebieche, M., Rouabhi, R., Touahria, C., Lahouel, A., Lakroun, Z., Henine, S. and Soulimani, R., 2017. Alteration of membrane integrity and respiratory function of brain mitochondria in the rats chronically exposed to a low dose of acetamiprid. Environmental science and pollution research24(28), pp.22258-22264. https://www.researchgate.net/profile/Salim-Gasmi/publication/319051533

185. Sano, K., Isobe, T., Yang, J., Win-Shwe, T.T., Yoshikane, M., Nakayama, S.F., Kawashima, T., Suzuki, G., Hashimoto, S., Nohara, K. and Tohyama, C., 2016. In utero and lactational exposure to acetamiprid induces abnormalities in socio-sexual and anxiety-related behaviors of male mice. Frontiers in neuroscience10, p.228. https://www.frontiersin.org/articles/10.3389/fnins.2016.00228/full

186. Ma, X., Li, H., Xiong, J., Mehler, W.T. and You, J., 2019. Developmental toxicity of a neonicotinoid insecticide, acetamiprid to zebrafish embryos. Journal of agricultural and food chemistry67(9), pp.2429-2436. https://pubs.acs.org/doi/abs/10.1021/acs.jafc.8b05373

187. Zhang, J.J., Yi, W.A.N.G., Xiang, H.Y., Li, M.X., Li, W.H., WANG, X.Z. and ZHANG, J.H., 2011. Oxidative stress: role in acetamiprid-induced impairment of the male mice reproductive system. Agricultural sciences in China10(5), pp.786-796. https://doi.org/10.1016/S1671-2927(11)60063-1

188. Yi-Wang, J.J.Z., Xiang, H.Y., Jia-Hua, Z. and Wang, X.Z., 2012. Acetamiprid residues in male mice and its effect on liver function. Journal of Animal and Veterinary Advances11(15), pp.2706-2710. https://www.researchgate.net/profile/Jiao-Jiao-Zhang-2/publication/321824514

189. Mondal, S., Ghosh, R.C., Karnam, S.S. and Purohit, K., 2014. Toxicopathological changes on Wistar rat after multiple exposures to acetamiprid. Veterinary World7(12). https://www.researchgate.net/profile/Samiran-Mondal-3/publication/286174358

190.  Karaca, B.U., Arican, Y.E., Boran, T., Binay, S., Okyar, A., Kaptan, E. and Özhan, G., 2019. Toxic effects of subchronic oral acetamiprid exposure in rats. Toxicology and industrial health35(11-12), pp.679-687. https://journals.sagepub.com/doi/abs/10.1177/0748233719893203?journalCode=tiha

191. Thurston County Health Department. 2014. Olympia, Washington. Thurston County Review Summary: Acetamiprid https://www.co.thurston.wa.us/health/ehipm/pdf_insect/insecticide%20actives/acetamiprid.pdf

192. Carbo, L., Martins, E.L., Dores, E.F., Spadotto, C.A., Weber, O.L. and De-Lamonica-Freire, E.M., 2007. Acetamiprid, carbendazim, diuron and thiamethoxam sorption in two Brazilian tropical soils. Journal of Environmental Science and Health, Part B42(5), pp.499-507. https://pubmed.ncbi.nlm.nih.gov/17562457/

193. Singh, T.B., Mukhopadhayay, S.K., Sar, T.K. and Ganguly, S., 2012. Induced acetamiprid toxicity in mice: a review. J Drug Metab Toxicol3(6). https://www.longdom.org/open-access/induced-acetamiprid-toxicity-in-mice-a-review-2157-7609.1000e115.pdf

194. Ji, C., Song, Q., Chen, Y., Zhou, Z., Wang, P., Liu, J., Sun, Z. and Zhao, M., 2020. The potential endocrine disruption of pesticide transformation products (TPs): The blind spot of pesticide risk assessment. Environment international137, p.105490. https://www.sciencedirect.com/science/article/pii/S0160412019332647?via%3Dihub#s0120

195. Devillers, J., 2020. Fate and ecotoxicological effects of pyriproxyfen in aquatic ecosystems. Environmental Science and Pollution Research27(14), pp.16052-16068. https://pubmed.ncbi.nlm.nih.gov/32180143/

196. Shahid, A., Zaidi, S.D.E.S., Akbar, H. and Saeed, S., 2019. An investigation on some toxic effects of pyriproxyfen in adult male mice. Iranian journal of basic medical sciences22(9), p.997. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6880530/

197. Chen, Y.W., Wu, P.S., Yang, E.C., Nai, Y.S. and Huang, Z.Y., 2016. The impact of pyriproxyfen on the development of honey bee (Apis mellifera L.) colony in field. Journal of Asia-Pacific Entomology19(3), pp.589-594. https://www.sciencedirect.com/science/article/abs/pii/S1226861516300012

198. Fourrier, J., Deschamps, M., Droin, L., Alaux, C., Fortini, D., Beslay, D., Le Conte, Y., Devillers, J., Aupinel, P. and Decourtye, A., 2015. Larval exposure to the juvenile hormone analog pyriproxyfen disrupts acceptance of and social behavior performance in adult honeybees. PloS one10(7), p.e0132985. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132985

199. Devillers, J. and Devillers, H., 2020. Lethal and Sublethal Effects of Pyriproxyfen on Apis and Non-Apis Bees. Toxics8(4), p.104. https://www.mdpi.com/2305-6304/8/4/104

200. Shahid, A. and Saher, M., 2020. Repeated exposure of pyriproxyfen to pregnant female mice causes developmental abnormalities in prenatal pups. Environmental Science and Pollution Research27, pp.26998-27009. https://pubmed.ncbi.nlm.nih.gov/32382916/

201. Truong, L., Gonnerman, G., Simonich, M.T. and Tanguay, R.L., 2016. Assessment of the developmental and neurotoxicity of the mosquito control larvicide, pyriproxyfen, using embryonic zebrafish. Environmental pollution218, pp.1089-1093. https://www.sciencedirect.com/science/article/abs/pii/S0269749116309794

202. The University of Hertfordshire. 2021. Pesticide Properties DataBase (PPDB): Pyriproxyfen. https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/574.htm

203. European Food Safety Authority (EFSA), Arena, M., Auteri, D., Barmaz, S., Brancato, A., Brocca, D., Bura, L., Carrasco Cabrera, L., Chiusolo, A., Court Marques, D. and Crivellente, F., 2018. Peer review of the pesticide risk assessment of the active substance spinosad. EFSA Journal16(5), p.e05252. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7009054/

204. Devillers, J., 2020. Fate of pyriproxyfen in soils and plants. Toxics8(1), p.20. https://www.mdpi.com/2305-6304/8/1/20/htm

205. The University of Hertfordshire. 2021. Pesticide Properties DataBase (PPDB): Fenoxaprop-ethyl https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/302.htm

206. He, Y.T., Wang, W., Shen, W., Sun, Q.Y. and Yin, S., 2019. Melatonin protects against Fenoxaprop-ethyl exposure-induced meiotic defects in mouse oocytes. Toxicology425, p.152241. https://www.sciencedirect.com/science/article/abs/pii/S0300483X19301878

207. Al-Sarar, A.S., Bayoumi, A.E., Abobakr, Y. and Hussein, H.I., 2014. Cytotoxicity of benalaxyl, metalaxyl, and triadimefon on Chinese hamster ovary cells. Toxicological & Environmental Chemistry96(10), pp.1546-1556. https://www.tandfonline.com/doi/abs/10.1080/02772248.2015.1023306

208. The University of Hertfordshire. 2021. Pesticide Properties DataBase (PPDB): Benalaxyl. https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/59.htm

209. European Food Safety Authority (EFSA), Anastassiadou, M., Arena, M., Auteri, D., Brancato, A., Bura, L., Carrasco Cabrera, L., Chaideftou, E., Chiusolo, A., Court Marques, D. and Crivellente, F., 2020. Peer review of the pesticide risk assessment of the active substance benalaxyl. EFSA Journal18(1), p.e05985. https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2020.5985

210. Kovacevik, B., Zdravkovski, Z., Mitrev, S. and Markova Ruzdik, N., 2021. Improving Quantitative Analysis of GC-MS for Tracking Potential Contaminants in Groundwater. Contaminant Levels and Ecological Effects: Understanding and Predicting with Chemometric Methods, pp.213-237. https://www.google.com/books/edition/Contaminant_Levels_and_Ecological_Effect/IdAiEAAAQBAJ?hl=en&gbpv=1&dq=benalaxyl+groundwater&pg=PA213&printsec=frontcover

211. USEPA, 2015. Benalaxyl-M; Pesticide Tolerances. https://www.federalregister.gov/documents/2015/07/30/2015-18741/benalaxyl-m-pesticide-tolerances

212. The University of Hertfordshire. 2021. Pesticide Properties DataBase (PPDB): Benalaxyl-M. https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/1010.htm

213. The University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase - Rosemary Oil. https://sitem.herts.ac.uk/aeru/bpdb/Reports/2065.htm

214. Dosoky, N.S. and Setzer, W.N., 2021. Maternal Reproductive Toxicity of Some Essential Oils and Their Constituents. International Journal of Molecular Sciences22(5), p.2380. https://www.mdpi.com/1422-0067/22/5/2380/htm

215. European Chemicals Agency. 2021. Registration Dossier: Methyl salicylate. https://echa.europa.eu/fr/registration-dossier/-/registered-dossier/2227/6/2/2

216. Sultana, Z., Khan, M.M., Mostakim, G.M., Moniruzzaman, M., Rahman, M.K., Shahjahan, M. and Islam, M.S., 2021. Studying the effects of profenofos, an endocrine disruptor, on organogenesis of zebrafish. Environmental Science and Pollution Research, pp.1-9. https://pubmed.ncbi.nlm.nih.gov/33405136/

217. The University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase - Carfentrazone-ethyl. https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/123.htm

218. European Food Safety Authority (EFSA), 2016. Peer review of the pesticide risk assessment of the active substance carfentrazone‐ethyl. EFSA Journal14(8), p.e04569. https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.

219. FMC Corporation. 2014. MATERIAL SAFETY DATA SHEET: Anthem Flex Herbicide. https://s3-us-west-1.amazonaws.com/www.agrian.com/pdfs/Anthem_Flex_MSDS.pdf

220. Thurston County Health Department. 2014. Olympia, Washington. Thurston County Review Summary: Carfentrazone-ethyl. https://www.co.thurston.wa.us/health/ehipm/pdf_aqua/aquatic%20actives/carfentrazone-ethyl.pdf

221. Lerro, C.C., Freeman, L.E.B., DellaValle, C.T., Andreotti, G., Hofmann, J.N., Koutros, S., Parks, C.G., Shrestha, S., Alavanja, M.C., Blair, A. and Lubin, J.H., 2021. Pesticide exposure and incident thyroid cancer among male pesticide applicators in agricultural health study. Environment International146, p.106187.

222. The University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase - Tebufenozide https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/611.htm

223. Xu, W., Wang, B., Yang, M., Zhang, Y., Xu, Z., Yang, Y., Cao, H. and Tao, L., 2017. Tebufenozide induces G1/S cell cycle arrest and apoptosis in human cells. Environmental toxicology and pharmacology49, pp.89-96. https://doi.org/10.1016/j.etap.2016.12.002

224. Lee, W.C. and Kwak, I.S., 2005. The Mentum deformity of C. plumosus following exposure to endocrine disruption chemicals. Korean Journal of Ecology and Environment38(1), pp.11-17. https://www.koreascience.or.kr/article/JAKO200518317183916.page

225. European Food Safety Authority, 2010. Conclusion on the peer review of the pesticide risk assessment of the active substance tebufenozide. EFSA Journal8(12), p.1871. https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2010.1871

226. Perez, J.; Bond, C.; Buhl, K.; Stone, D. 2015. Bacillus thuringiensis (Bt) General Fact Sheet; National Pesticide Information Center, Oregon State University Extension Services. http://npic.orst.edu/factsheets/btgen.html. 

227. The University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase - Tribenuron-methyl. https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/655.htm

228. European Chemicals Agency. 2021. Brief Profile: Tribenuron-methyl.  https://echa.europa.eu/fr/brief-profile/-/briefprofile/100.100.313

229. The University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase - Thifensulfuron-methyl https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/635.htm

230. USEPA, 2010. Thifensulfuron-methyl; Pesticide Tolerances. Federal Register. https://www.federalregister.gov/documents/2010/04/14/2010-8135/thifensulfuron-methyl-pesticide-tolerances

231. USEPA, 2004. Tribenuron Methyl; Notice of Filing a Pesticide Petition to Establish a Tolerance for a Certain Pesticide Chemical in or on Food. Federal Register. https://www.federalregister.gov/documents/2004/07/07/04-15208/tribenuron-methyl-notice-of-filing-a-pesticide-petition-to-establish-a-tolerance-for-a-certain

232. USEPA, 2001. Imazapic; Pesticide Tolerance. Federal Register. https://www.federalregister.gov/documents/2001/12/26/01-31493/imazapic-pesticide-tolerance

233. Golombieski, J.I., Sutili, F.J., Salbego, J., Seben, D., Gressler, L.T., da Cunha, J.A., Gressler, L.T., Zanella, R., de Almeida Vaucher, R., Marchesan, E. and Baldisserotto, B., 2016. Imazapyr+ imazapic herbicide determines acute toxicity in silver catfish Rhamdia quelenEcotoxicology and Environmental Safety128, pp.91-99. https://www.sciencedirect.com/science/article/abs/pii/S0147651316300410

234. The University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase - Imazapic. https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/1152.htm.

235. Washington State Board of Transportation. 2021. Imazapic-Roadside Vegetation Management Herbicide Fact Sheet. https://wsdot.wa.gov/sites/default/files/2021-10/Herbicides-factsheet-Imazapic.pdf

236. Bao, W., Liu, B., Simonsen, D.W. and Lehmler, H.J., 2020. Association between exposure to pyrethroid insecticides and risk of all-cause and cause-specific mortality in the general US adult population. JAMA internal medicine180(3), pp.367-374. https://pubmed.ncbi.nlm.nih.gov/31886824/

237.del Pilar Navarrete-Meneses, M. and Pérez-Vera, P., 2019. Pyrethroid pesticide exposure and hematological cancer: epidemiological, biological and molecular evidence. Reviews on environmental health34(2), pp.197-210. https://pubmed.ncbi.nlm.nih.gov/30903760/

238. Verma, R., Study of the mechanism of synthetic pyrethroid type II fenvalerate on biochemical and hematological alterations in poultry. https://www.researchgate.net/profile/Ranjana-Verma-4/publication/342735936_Study_of_mechanism_of_synthetic_pyrethroid_type_II_fenvalerate_on_biochemical_and_hematological_alterations_in_poultry/links/5f043e1a299bf1881607e36d/Study-of-mechanism-of-synthetic-pyrethroid-type-II-fenvalerate-on-biochemical-and-hematological-alterations-in-poultry.pdf