[X] CLOSEMAIN MENU

  • Archives

  • Categories

    • air pollution (8)
    • Announcements (597)
    • Antibiotic Resistance (38)
    • Antimicrobial (17)
    • Aquaculture (30)
    • Aquatic Organisms (33)
    • Bats (7)
    • Beneficials (51)
    • Biofuels (6)
    • Biological Control (32)
    • Biomonitoring (37)
    • Birds (25)
    • btomsfiolone (1)
    • Bug Bombs (2)
    • Canada (10)
    • Cannabis (29)
    • Centers for Disease Control and Prevention (CDC) (9)
    • Chemical Mixtures (2)
    • Children (107)
    • Children/Schools (240)
    • cicadas (1)
    • Climate (30)
    • Climate Change (84)
    • Clover (1)
    • compost (5)
    • Congress (14)
    • contamination (147)
    • deethylatrazine (1)
    • Disinfectants & Sanitizers (17)
    • Drift (11)
    • Drinking Water (12)
    • Ecosystem Services (10)
    • Emergency Exemption (3)
    • Environmental Justice (161)
    • Environmental Protection Agency (EPA) (494)
    • Events (87)
    • Farm Bill (18)
    • Farmworkers (188)
    • Forestry (5)
    • Fracking (4)
    • Fungal Resistance (6)
    • Fungicides (24)
    • Goats (2)
    • Golf (15)
    • Greenhouse (1)
    • Groundwater (12)
    • Health care (32)
    • Herbicides (31)
    • Holidays (37)
    • Household Use (9)
    • Indigenous People (6)
    • Indoor Air Quality (5)
    • Infectious Disease (4)
    • Integrated and Organic Pest Management (67)
    • Invasive Species (35)
    • Label Claims (49)
    • Lawns/Landscapes (245)
    • Litigation (340)
    • Livestock (9)
    • men’s health (1)
    • metabolic syndrome (2)
    • Metabolites (3)
    • Microbiata (20)
    • Microbiome (26)
    • molluscicide (1)
    • Nanosilver (2)
    • Nanotechnology (54)
    • National Politics (388)
    • Native Americans (3)
    • Occupational Health (14)
    • Oceans (9)
    • Office of Inspector General (2)
    • perennial crops (1)
    • Pesticide Drift (158)
    • Pesticide Efficacy (8)
    • Pesticide Mixtures (5)
    • Pesticide Regulation (769)
    • Pesticide Residues (179)
    • Pets (36)
    • Plant Incorporated Protectants (1)
    • Plastic (2)
    • Poisoning (18)
    • Preemption (40)
    • President-elect Transition (2)
    • Repellent (4)
    • Resistance (117)
    • Rights-of-Way (1)
    • Rodenticide (33)
    • Seasonal (2)
    • Seeds (6)
    • soil health (11)
    • Superfund (3)
    • synergistic effects (17)
    • Synthetic Pyrethroids (16)
    • Synthetic Turf (2)
    • Take Action (581)
    • Textile/Apparel/Fashion Industry (1)
    • Toxic Waste (11)
    • Volatile Organic Compounds (1)
    • Wildlife/Endangered Sp. (454)
    • Women’s Health (25)
    • Wood Preservatives (34)
    • World Health Organization (10)
    • Year in Review (2)
  • Most Viewed Posts

Daily News Blog

Archive for the 'fluvalinate' Category


09
Apr

Honey Bee Queens’ Exposure to Pesticides Weaken Reproductive Success and Colony Development

(Beyond Pesticides, April 9, 2020) Honey bees (Apis mellifera) remain in severe decline, with U.S. beekeepers losing 30% of their managed colonies each year. A Texas A&M University (Dr. Juliana Rangel’s laboratory)  study provides evidence that chemical-intensive farming practices contaminate honey bee hives with pesticides that cause developmental delays. Researchers found that toxic pesticides adversely affect honey bee queen physiology and worker bee performance. Moreover, pesticides exacerbate the health risks associated with the declining honey bee population. When maturing honey bees’ exposure to pesticides is limited, there is an improvement in honey bee queen health and colony behavior. In agricultural settings, honey bees are exposed to an amalgamation of pesticides. AAFC and Texas A&M researchers determined which pesticides (miticides, insecticides, and fungicides) are commonly used in combination and then used those pesticide combinations to expose honey bees to field-realistic doses in the lab: tau-fluvalinate and coumaphos, amitraz, or chlorothalonil and chlorpyrifos. Researchers cultivated maturing honey bee queens in plastic cups coated with either pesticide-free or pesticide-contaminated beeswax. Honey bee queens were transferred into hives upon maturation and bred naturally. Researchers measured their egg-laying frequency along with worker bee entourage size. Post-reproduction, scientists performed a bioassay (a measurement of substance potency or concentration effects on living cells) on […]

Share

07
Mar

Common Household Pesticides Again Linked to Behavioral Problems in Children

(Beyond Pesticides, March 7, 2017) Another study, published by a team of French scientists in the journal Occupational and Environmental Medicine, links childhood behavioral problems to pyrethroid insecticide exposure. Synthetic pyrethroids are a class of insecticides that have increased in use over the past decade due to assumptions that they pose fewer risks to human health than older pesticide chemistries, such as organophosphates. However, this latest study is part of a growing body of research showing that pyrethroids share similar neurocognitive health concerns as these older pesticides. .   In this research, scientists investigate the interplay between pyrethroid exposure and behavioral problems through a longitudinal cohort study, which tracks levels of pyrethroid metabolites, or breakdown products, in the urine of mothers beginning between six and 19 gestational weeks and then in their children up through six years of age. Children’s behavior is measured through a screening questionnaire known as the Strengths and Difficulties Questionnaire (SDQ). SDQ measures how social a child is (altruism), whether the child has difficulty sharing problems or asking for help (internalizing disorders), as well as how defiant or disruptive a child is (externalizing disorders). The study controlled for a number of confounding factors, such as weight, education, location (rural or […]

Share

06
Feb

Bee Larvae Adversely Affected by Mix of Pesticides and Inert Ingredients

(Beyond Pesticides, February 6, 2014) We know that pesticides and bees don’t mix and that particular pesticides, such as neonictinoids, pose significant threats to bee populations worldwide, but a recent study conducted by researchers at Pennsylvania State University have identified that it is “the mix” of the many chemicals in the environment that pose a significant threat to honey bee survival. Looking at the four most common pesticides detected in pollen and wax –fluvalinate, coumaphos, chlorothalonil, and chloropyrifos, Wanyi Zhu and other researchers have assessed the toxic impacts of these pesticides on honey bee larvae at real world exposure levels; that is, levels that are found in existing hives outside of a laboratory. But these researchers go beyond the usual one-chemical analysis in their study,  Four Common Pesticides, Their Mixtures and a Formulation Solvent in the Hive Environment Have High Oral Toxicity to Honey Bee Larvae. Rather than just looking at the pesticides in their individual, out-of-the-bottle form, they also mixed them up and broke them apart. Why did they take this mixed-up approach? “Recently, one hundred and twenty-one different pesticides and metabolites were identified in the hive with an average of seven pesticides per pollen sample, including miticides, insecticides, […]

Share

30
Mar

Unprecedented Pesticide Contamination Found in Beehives

(Beyond Pesticides, March 30, 2010) Searching for clues to the mysterious disappearance of bees, known as “colony collapse disorder”(CCD), Penn State University researchers have identified widespread pesticide contamination of beehives. The study, “High Levels of Miticides and Agrochemicals in North American Apiaries: Implications for Honey Bee Health,” was published March 19, 2010 in the scientific journal Public Library of Science (PLOS). The study finds 121 different types of pesticides within 887 wax, pollen, bee and hive samples from 23 states. The top 10 most frequently detected pesticides are fluvalinate, coumaphos, chlorpyrifos, chlorothalonil, amitraz, pendamethalin, endosulfan, fenpropathrin, esfenvalerate and atrazine. Miticides are the most common contaminant in the wax and bees, and fungicides are the most common contaminant of pollen. For the full results of the study, including several tables of wax, pollen and bee sample data, download the study from the PLOS website. “The pollen is not in good shape,” Chris Mullin, PhD, lead author of the study, told Discovery News. The authors state that the 98 pesticides and metabolites detected in mixtures up to 214 parts per million (ppm) in bee pollen alone represents a remarkably high level for toxicants in the brood and adult food of this primary […]

Share

03
Nov

Bee Die-Offs Linked to Pesticide Mixtures, Window of Exposure

(Beyond Pesticides, November 3, 2009) Research by scientists at the University of Florida (UF) links Colony Collapse Disorder (CCD), the widespread disappearance of honey bees that has killed off more than a third of commercial honey bees in the U.S., to larval exposure to a cocktail of frequently used pesticides. Led by UF Institute of Food and Agricultural Sciences bee specialist Jamie Ellis, PhD, the researchers have finished a first round of testing on bee larvae exposed to the pesticides most commonly found in bee hives. The results were presented on October 22 at a meeting of the North American Pollinator Protection Campaign (NAPPC), which funded the study. The work gives insight into how the larvae react to these pesticides, which are usually only tested on adult bees, and sets the stage for the researchers to test the bees’ reaction to combinations of these pesticides. Just like mixing the wrong medications can have deadly and unpredictable results in humans, chemical mixtures pose a quandary for the bee industry. Bees are commonly exposed to multiple pesticides that are either applied to or nearby their hives. “Beeswax, honey and pollen can contain low mixtures of fungicides, insecticides, and herbicides. The larvae develop […]

Share

02
Sep

Research Shows Wide Array of Pesticide Exposures to Bees

(Beyond Pesticides, September 2, 2008) In new research findings by a Pennsylvania State University team, honey bees are exposed to a wide variety of pesticides outside of their hives. Add the outside assault to the pesticides already in the waxy structure of the hive, and bee researchers see a problem difficult to evaluate. However, an innovative approach may mitigate at least some beeswax contamination. The researchers presented their analysis of pollen, brood, adult bees and wax samples on August 18 at the 236th national American Chemical Society meeting in Philadelphia. Those results show unprecedented levels of fluvalinate and coumaphos – pesticides used in the hives to combat varroa mites – in all comb and foundation wax samples. They also find lower levels of 70 other pesticides and metabolites of those pesticides in pollen and bees. “Everyone figured that the acaricides (anti-varroa mite chemicals) would be present in the wax because the wax is reprocessed to form the structure of the hives,” says Maryann Frazier, senior extension associate. “It was a bit of a shock to see the levels and the widespread presence of these pesticides.” While the researchers expected the presence of the chemicals available to treat varroa mites in […]

Share